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Abstract

Hot tear cracks and related defects are important issues that limit both productivity and

quality of the continuous casting of steels. Computational models can play a crucial role for

understanding and predicting these problems, and providing directions for improvements.

Previous thermal stress models of the continuous casting process are reviewed, focusing on

treatment of the mushy zone and hot-tear criteria. Existing hot-tear criteria are reviewed

and evaluated. A two-phase (solid and liquid) model describing the mushy steel is developed

as an initial step toward developing comprehensive hot tear criteria for steel casting. An

empirical strain criterion is, then, chosen to predict hot tear cracks, based on thermal and

stress histories.

A coupled finite-element model, CON2D, is improved to predict hot tear cracks based

on the temperature and stress histories during the continuous casting of steel focusing on

high speed billet casting. Thermal boundary conditions are investigated to make realistic

predictions of high speed casting. These include heat flow at the strand surface, gap de-

pendent thermal model across the interfacial layer between the mold and steel strand, and

uneven superheat distribution at the solidification front due to the flow of liquid steel. A

method based on a micro-segregation model is implemented to provide better liquid and

solid phase fractions. A creep-based constitutive model is applied to treat liquid and mushy

regions, rather than using a non-physical small elastic modulus as done in previous models.

The empirical hot tear criterion is integrated into CON2D to predict hot tear cracks. The

model is first validated by accurately matching an analytical solution for both temperature

and stress in a solidifying slab with properly refined mesh and time step sizes. It is further

validated by simulating continuous casting of a 120mm billet and compares favorably with

plant measurements of mold wall temperature, total heat removal, shell thickness, including

thinning of the corner and bulged shape.

The model is then applied to investigate three separate issues in high speed continuous

casting. Firstly, the minimum shell thickness to avoid breakouts is predicted. Failure occurs
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when the total strain across the local thin shell due to ferrostatic pressure exceeds the critical

strain where hot tear cracks initiate. The predicted minimum shell thickness is only 3mm

and varies slightly with steel carbon content. Without local thin spots, this restriction does

not put practical limits on maximum casting speed. Considering that peritectic steels are

more likely to have local thin spots, this explains their propensity for breakouts. Secondly,

the maximum casting speed to avoid hot off-corner sub-surface cracks is predicted when the

maximum accumulated damage strain exceeds the critical strain. This first occurs beneath

off-corner surface. The predicted casting speed limit is up to 6.4m/min for a 120mm square

billet casting in a 1100mm long mold. The limit drops with increasing section size and

decreasing mold length. These predictions are confirmed by reported plant practice casting

speeds. Thirdly, optimal mold taper is investigated along the casting direction with special

attention to the corner effects. Simulation shows that the mold wall at the billet corner

should not exactly follow the strand as commonly believed. Instead, a small, controlled

amount of gap at the corner is preferred to produce uniform surface temperature in order to

avoid both in-mold corner surface cracks and sub-mold off-corner sub-surface cracks.
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Chapter 1. Introduction

Continuous casting has been producing semi-finished steel shapes: blooms, billets, slabs

and strips, with increasing high quality at lowering cost since it is introduced in 1964 [11].

The process, as shown in Figure 1.1 as a typical two strand slab casting, has been adopted

worldwide by the steel industry. By 2002, the crude steel output from the continuously cast

process is more than 88% of the total world steel production of 794.5 million metric tons [12].

As the steel industry continues to improve quality and reduce cost, there is growing

interest in maximizing the productivity from a single continuous casting machine. Many

different processes are currently competing, from conventional thick slab and blooms to thin

slabs and strip casting, whose economic feasibility depends on their eventual productivity.

Considering the high cost of plant experiments, it is appropriate to apply computational

modeling to explore the theoretical limits of continuous casting speed and productivity.

Productivity increases with increasing casting speed and increasing cross-section area.

The casting speed is limited by several different phenomena, listed below.

1. Excessive level fluctuations and waves at the meniscus become worse with greater

casting speed. This can cause surface quality problems and even sticker “breakouts”.

This problem can be addressed by changing nozzle design (directing the flow more

downward, possibly by adding a bottom vertical port), applying electromagnetic forces,

changing mold fluxes, and using other methods to control the flow pattern in the mold.

2. Excessive axial strains caused by the oscillation and withdrawal forces needed to over-

come friction between the solidifying shell and the interfacial layers in the mold can lead

to transverse cracks and breakouts at mold exit. Schwerdtfeger [7] has calculated that

these stresses are negligible if the liquid layer of the mold flux can be kept continuous

over the entire mold surface.
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3. Excessive transverse strains may be generated in the thin shell by the ferrostatic pres-

sure of the liquid pool below the mold. This can lead to longitudinal cracks and

“breakouts” if the shell is not thick enough at mold exit.

4. Any local nonuniformity in the shell growth can lead to locally hot and thin regions

in the shell, which can initiate longitudinal cracks and breakouts even if the shell is

above the critical thickness on average. This problem, which has been investigated by

Brimacombe and others, [13] can be addressed by optimizing mold flux behavior during

initial solidification, oscillation practice, and taper design, such that flux lubrication is

continuous, the initial heat flux is low and uniform, and the mold wall taper matches

the shell shrinkage profile [14]. Peritectic steel grades and austenitic stainless steel are

most susceptible to this problem. Superheat delivered from the flowing steel jets can

also contribute to this problem, especially near the narrow faces in slab casting with

bifurcated nozzles.

5. Excessive bulging of the strand below the mold can lead to a variety of internal cracks

and even breakouts if the bulging is extreme. Bulging can be controlled by choosing

short enough support roll spacing, maintaining roll alignment, controlling spray cooling

below the mold, and by avoiding sudden changes in roll pitch, sprays, or casting speed.

6. The distance below the meniscus of the point of final solidification of the center of the

strand increases in direct proportion with casting speed for a given section thickness,

which usually limits the maximum casting speed in a given steel plant. The torch cut-

off, spray cooling system, and roll support system all must extend to accommodate

this increase in metallurgical length. Contrary to intuition, this metallurgical length

cannot be significantly shortened by increasing the spray cooling intensity [15]. This

understanding is incorporated in the pioneering work of Brimacombe and coworkers to

provide design criteria for spray zones [15,16].
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7. Finally, there are many other special quality concerns which sometimes impose limits

on casting speed. For example, in ultra-low carbon steels, a relatively slow upper limit

in casting speed is required in order to reduce pencil pipe and other blister defects

due to argon bubble entrapment on the inner radius of curved mold casters [17, 18].

Casting speed can only be increased in these situations by careful changes in operating

conditions that avoid the specific defects of concern.

The capability of making high quality and low cost steel by the continuous casting process

is limited by these and other problems. These defects result in tons of scrapped product

annually, expensive defect detection equipment, and other efforts that increase the cost for

the steel producing companies, and ultimately the consumer. Several physical phenomena,

such as the chemical reactions among steel compositions, flow pattern of the liquid steel, heat

transfer, solidification as well as the evolution of residual stresses etc., compete with each

other during the process and control the behavior of the steel. The complicated nature of

the process and the harsh operating conditions make it very difficult to simulate the process

in experiments under realistic condition. This makes mathematical simulation an important

tool to gain insight into the process.

1.1 Process Review

A schematic representation of the continuous casting process is shown in Figure 1.2

focusing on the mold region. The superheated liquid steel is poured into the open ended

water cooled copper mold through a nozzle, that is submerged into the liquid steel pool. Heat

is extracted from the liquid steel by the cooling water flowing through the mold water slots

across the partially solidified steel shell, the interfacial layer between the shell surface and

the mold wall, and the copper mold wall. The steel shell keeps growing as it is pulled down

the mold and builds up enough thickness and strength to withstand the ferrostatic pressure

from the liquid steel due to gravity until it reaches the mold exit. The mold is tapered to
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follow the shrinkage of the steel shell and distorted due to the temperature gradients that

develop where the mold wall does not follow the shell shrinkage perfectly, gaps may form

between the mold wall and shell surface, which reduce the heat transfer rate and leads to

local hot spots on the shell. In extreme situations, liquid steel will break through the hot

and weak shell, which is commonly referred to as a “breakout”. The mold oscillates during

operation to prevent the shell from sticking to the mold wall. This allows the shell to be

withdrawn out of the mold without tearing. The oscillation is also responsible for transverse

ripples, called “oscillation marks” on the strand surface which will influence the heat transfer

rate between the mold wall and the strand surface.

Below the mold exit, the shell is pushed outward due to the ferrostatic pressure from

the liquid pool, causing “bulging” as shown in Figure 1.2. Bulging results stresses in the

solidifying steel shell and leads to longitudinal surface cracks at the strand face center and

subsurface creates near the corner. The amount of bulging is directly related to the the

thickness of the steel shell and further related to other operation conditions such as casting

speed and super heat, and mold conditions such as mold dimensions and taper.

The shell is further cooled by water sprays and passes a series of the guide rollers in

an arc, which is to reduce the height of the caster, until it travels horizontally as shown in

Figure 1.1. The strand length from the meniscus to the position where the strand is totally

solidified is termed the “metallurgical length”. Then, the completely solidified product is

torch-cut into final slabs of desired length. The section shape of the final slab is normally not

the same as the section shape of the mold, which is called shape distortion, due to residual

stresses during the solidification and the cooling procedure.

1.2 Objective

The objective of this work is to investigate 3 different practical continuous casting prob-

lems, including critical shell thickness due to membrane stress caused by ferrostatic pressure,

casting speed limit due to sub-mold bulging, and ideal taper prediction, by using the thermal-
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mechanical finite element model, CON2D, which was previously developed by professor Brian

G. Thomas and his students [19, 20]. Further development work is needed as part of this

project to make the model more accurate and to verify this accuracy. These include imple-

mentation of a non-equilibrium phase diagram for improving property prediction for plain

carbon steels, improvement of the heat transfer model to better incorporate mold flux and

the mold wall into the model, improvement of the stress model to treat liquid and mushy

elements more accurately, and adding a fracture criterion into the model to predict cracking

tendency near the solidification front.

1.3 Methodology

To achieve these objectives, the following is performed which is described in this thesis:

In Chapter 2, previous work on the development of mathematical models for the continu-

ous casting process is reviewed. These includes the modeling scope, the numerical methodol-

ogy, the steel behavior at elevated temperatures, and the temperature dependent properties.

Then, previous hot tear criteria are reviewed and evaluated. A strain criterion [21] is chosen

to implement in CON2D to predict hot tear cracks quantitatively. At last, several consti-

tutive models for the mushy region are reviewed because it is very important to model this

region reasonably to make it possible to predict hot tear cracks, which is well believed to

initiate here.

In Chapter 3, the mechanical behavior of the mushy region is investigated using spa-

tial averaged governing equations (mass and momentum balance equations for single phase

liquid and solid steels) over a small control volume contains both liquid and solid phases.

Constitutive models are proposed for mushy regions with different solid fractions.

In Chapter 4, the in-house developed 2-D finite element thermal mechanical model under

the generalized plane strain assumption, CON2D, is introduced in detail. This model features

elastic-viscoplastic constitutive models for δ-, α-ferrite, and austenite(γ). A creep-dependent

function is applied to grasp the liquid behavior properly. An efficient alternating implicit-
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explicit numerical integration method solves this highly non-linear problem. A specially

designed contact algorithm, a moving internal boundary tracking method, as well as an

interfacial heat resistor model fully coupling the heat transfer and the stress models model

the continuous casting process as realistic as possible. Other features such as uneven super

heat distribution according to fluid flow model, and temperature dependent steel properties

are also included in CON2D. Finally, the model is validated against both analytical solution

and plant measurements from industry.

Chapter 5 investigates the critical thickness necessary to contain the liquid pool and

avoid longitudinal rupture or “breakouts” due to excessive creep strain of the thin shell.

This investigates the minimum total heat necessary to be extracted by mold to generate

thick enough shell to avoid cracks , and further leads theoretical upper limits on casting

speed and local gap sizes imposed by this need.

Chapter 6 focuses on quantifying the effect of sub-mold bulging to the initiation of off-

corner sub-surface hot tearing cracks by applying CON2D to predict temperature, bulging,

strain, stress and fracture in billets, in the absence of any sub-mould support. The results

are then used to find the critical casting speeds to avoid quality problems related to bulging

below the mold as a function of section size and mould length.

The criteria for how to chose optimal taper is studied in this work in chapter 7, based

on simulations of the thermal-mechanical behavior of billets with the three types of mold

configuration producing hot corner, cold corner and equal surface temperature around the

perimeter. Optimal taper profiles are then predicted as a function of casting speed, using a

computational model fit to match billet heat flux measurements.

In Chapter 8, conclusions and some recommendations for the future advance are drawn.

6



1.4 Figures and Tables

Fig. 1.1: Schematic overview of a two-strand slab casting process [1]
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Chapter 2. Literature Survey

2.1 Thermal-Mechanical Models of Continuous Casting of Steel

Thermal-mechanical modeling is an important tool to assist people understanding the

fundamentals of quality issues such as cracks and shape distortions owing to the residual

stresses and strains generated by thermal and mechanical loads. Previous literature is re-

viewed in this chapter according to their consideration of the following crucial aspects.

1. Properly chosen simulation scope.

2. Realistic thermal and mechanical properties of steels at elevated temperatures.

3. Reasonable mechanical behavior function of steels at elevated temperatures.

4. Adequate treatment of thermal and mechanical boundary conditions at the surface and

solidification front of the solidifying steel.

Even though the computing power of modern computers is increasing at a tremendous speed,

it is still far from satisfying the demands of a complex model having all of the realistic features

listed above. Moreover, some of the features, such as physical properties and mechanical

behavior of steels, are not well defined especially near the solidus and liquidus temperatures.

Therefore, all existing models are subject to some simplifications from reality which lead to

different approaches.

2.1.1 Simulation Scope

Skipping the design details, the continuous casting process is nothing but pouring liquid

steel into an open mold and dragging the solidified steel out of the bottom. During most

time of the operation, continuous casting process is in steady state, neglecting some transient

phenomena such as process start-up, meniscus fluctuation and mold oscillation. This makes

Eulerian approach based on spacial frame of reference a natural choice for many practical
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problems. However, the mechanical behavior of steels at elevated temperature range of

the continuous casting process is highly inelastic and history dependent. The temperature,

stress, and strain states are associated with the material points and their state history. This

makes a Lagrangian approach which tracks a portion of steel from the meniscus be a better

candidate.

Even though both approaches have been adopted depending on different applications, the

Lagrangian approach is more favorable due to its ease of implementation. Many researchers

developed their models using a Lagrangian frame tracking a portion of steel (1D slice, 2D

section slice, 2D longitudinal slice or 3D blocks) from the meniscus. These include early

models back to the late 1970s and early 1980s by Brimacombe and his colleagues [22–25],

Rammerstorfer et. al. [26–29], Kristiansson et. al. [30–32], Kinoshita et. al. [33] as

well as recent models by Thomas and his colleagues [34–38], Park et. al. [39–41], Tszeng

et. al. [42], Mizoguchi et. al. [43], Boehmer et. al. [44–47] and Han et. al. [48]. On

the other hand, models based on an Eulerian approach have had limited implementation

since the constitutive behavior is still based on materials points even though the modeling

domain is associated with spatial points. In this approach, a special treatment is needed to

take care of the advection term while integrating the constitutive equations on the material

points moving relative to the spatial framework. Barber et. al. [49] and L. Yu [50] used

this approach to investigate the bulging between two adjacent rolls. Kelly et. al. [51],

Tatsumi et. al. [52], and Lee et. al. [53] used their models to simulate the mold and shell

interactions as the steel flow through the mold. A model based on a new method called

Arbitrary Lagrangian Eulerian (ALE), which is an extension of the Eulerian approach, is

developed by Fachinotti et. al. [54, 55] and used to predict the gap between the mold and

the shell surface for round billet casting.

Fachinotti et. al. claimed that the Eulerian approach has an accuracy advantage [56]

over a Lagrangian approach that models only a slice of steel, especially for simulating mold

and shell interactions to predict the gap. This is because the Lagrangian approach with a
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slice section domain assumes independence between the slices at different distances below

meniscus. However, the computing capability of modern computers is still not enough to

perform accurate 3D simulations with either Lagrangian or Eulerian approaches with a

properly refined mesh and realistic material behavior in a feasible time frame. Therefore,

most of the models used to gain realistic and practical insight in slab and square billet casting

only have a 2D modeling domain under either axi-symmetric [51–53] or plane stress/strain

assumptions [22–41]. In this situation, the Lagrangian approach is able to model almost all

continuous casting stand shapes, billets, blooms, slabs, and even strips, while the Eulerian

approach is limited to round blooms [51–55].

2.1.2 Mechanical Behavior of Steels

The mechanical behavior of steel, is the most important factor leading to a successful

thermal mechanical simulation. Steels behave quite differently at elevated temperatures

near their melting point. History-independent plasticity and history-dependent creep are

too substantial to be neglected. Moreover, they cannot be distinguished during a tensile or

compression test at elevated temperature [57]. Although many efforts have been made to

investigate the mechanical behavior of steels near their melting temperature, including uni-

axial tensile tests [58–61] , creep tests [62], and bending tests [63], the actual behavior is still

not fully quantified under all of the practical conditions experienced during the continuous

casting of steel owing to its being highly history-dependent. Several types of constitutive

models are used to model the mechanical behavior of steels at elevated temperatures close

to their solidus temperature, including elastic-plastic models, elastic-creep models, elastic-

plastic-creep models and unified elastic-viscoplastic models.

The simple elastic-plastic models with an elastic modulus and one or more plastic moduli

are applied to simulate the mechanical behavior of steel in some early stress models for the

continuous casting process [22, 23, 25]. This model is improved to incorporate temperature

dependent elastic and plastic moduli to capture more realistic steel behavior [45, 46, 51, 52].
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These simple models are too crude to capture the steel behavior quantitatively. They could

only provide qualitative understanding of the steel behavior. The loading conditions defined

in the standard tensile test can be used to calibrate these elastic-plastic constitutive models.

Specifically, the strain rate is chosen to match the actual process conditions.

The elastic-plastic approach neglects time dependency of the steel caused by creep, which

is substantial at elevated temperature where the continuous casting process works. Some

models, including elastic-creep and elastic-plastic-creep models, include creep to get more

accurate steel behavior [27, 28, 30–32, 44, 47]. These models treat the creep and plasticity

separately. Splitting the inelastic strain into a rate-independent plastic part and a rate-

dependent creep part is physically arbitrary, since both phenomena happen simultaneously

during the tensile or creep experiment at the elevated temperature. It is difficult to find a

set of elastic-plastic and creep model to accurately simulate the steel behavior.

Many recent stress models adopt “unified” elastic-viscoplastic constitutive equations with

evolving internal structure variables such as stress, strain, and temperature [41,42,48,53,64].

In these models, the inelastic strain rate is a function of the current stress, inelastic strain,

temperature. Some models [34–38, 54, 55, 65] adopted a unified model with an extra state

variable, steel carbon content, proposed by Kozlowski [66]. Integrating these equations under

proper boundary conditions produces realistic stress-strain curves under arbitrarily chosen

loading conditions. It could accurately simulate the steel behavior by considering these struc-

ture variables. However, the unified model is numerically too stiff to easily integrate. More

advanced and robust integration algorithms and longer computational times are normally

required. A review of numerical integration schemes for constitutive models can be found

by Zhu [20].

2.1.3 Thermal and Mechanical Boundary Conditions

Besides the conventional boundary conditions of the thermal and stress models (specified

temperature, heat convection coefficient, heat flux, fixed displacement, and surface traction)
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several special boundary conditions are necessary to simulate the continuous casting process

properly. Solidification and interaction between the mold wall and the shell each require

special boundary models.

Interaction between the mold wall and the strand surface

Interactions between the mold wall and the strand surface include the heat transfer rate

dependence on the gap between the mold and strand and the mechanical constraint of the

mold to the strand. These two separate but related interactions often require the heat

transfer model to be fully coupled with the stress model.

Gap The heat transfer rate is a strong function of the gap formed between the mold

and the steel strand. Many efforts have been conducted to predict the ideal mold shape

that can follow the strand shrinkage exactly to prevent the gap formation [34, 35, 67–71].

However, the gap cannot be totally eliminated because of the complicated 3-D profile of the

shrinking strand surface. Moreover, the gap size depends greatly on the specific operation

conditions of the caster and the type of steel being cast. Therefore, to model the heat

transfer rate as a function of the gap yields more insight than providing a pre-described heat

flow rate at the strand surface. Unfortunately, fully coupled models always lead to extra

computational cost and the convergence difficulty, which makes the simulation take longer

than an uncoupled one [44]. Many previous models included the interaction between the

heat transfer and the stress models to determine the interfacial heat transfer rate during the

analysis [32,33,36,41,45,47,48,51,53,54]. To solve this coupled problem, first the temperature

field in strand is calculated using an estimation of the gap size between the strand surface

and the mold wall. The stress model is then solved to get the shrinkage of the strand. The

gap size is calculated from the strand shrinkage and the mold wall position. Finally, the

gap sizes between each two consecutive iterations are checked until convergence is achieved.
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Some models also calculate the temperature field in the mold to give an accurate estimation

of the mold distortion [41,45,48,51,53,54].

Contact The mechanical constraint from the mold wall to the strand brings a high non-

linearity into the stress model as the strand could shrink freely away from the mold wall, but

could not penetrate it when the strand contacts the mold wall. In a transient problem, the

contact region and the contact pressure are both unknown a priori. Three main approaches,

the Lagrange multiplier method [72–74], the penalty method [75, 76], and the augmented

Lagrangian method [77–79], have been adopted for numerical treatment of contact in the

context of finite-element methods. The penalty method approximately constrains the strand

surface at the mold wall position by adding a very large number on the main diagonal terms

of the stiffness matrix as if adding a very stiff spring between the mold wall and the strand

surface. It is easy to implement with a little cost of accuracy. The Lagrangian methods

introduce new unknowns, which represent the contact pressure, into the system. They can

provide both constraint and contact pressure. However, they are difficult to implement and

converge. Moreover, their computational cost are usually huge for large problems.

Moving Boundary - Solidification Front

The thermal stress model with solidification phenomena has a moving boundary - the

solidification front. This moving front, identified by an isotherm, distinguishes how an

element behaves, as solid or liquid.

From the heat transfer point of the view, the superheat contained in the liquid steel is

distributed to the solidification front as the liquid flows around in the liquid pool. Some

efforts have been made to include this by solving a fully coupled thermal-fluid-mechanical

system simultaneously. It is no surprise that these models are very computationally expensive

and difficult to develop. Kelly et. al. transferred data between two commercial packages,

FIDAP and NIKE2D, to solve the coupled thermal-fluid-mechanical model to simulate the
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continuous casting of round billets [51]. Recently, Lee et. al. developed an integrated

thermal-fluid-mechanical package to simulate continuous round billet casting [53]. Another

way to incorporate this convective heat transfer due to fluid flow is to simulate the effect of

the fluid flow pattern on the superheat distribution by a separate fluid flow model, and then

input it as an internal boundary condition into the thermal-stress model [80].

From the stress point of view, the ferrostatic pressure from the liquid steel due to gravity

acts on the solidification front pushing the solid shell toward the mold wall. Although a

couple of models treated this in a natural way as a body force [45, 54], many other models

treat it as an internal boundary condition [31,32,36,41,47,48,51,53]. This is because the shear

stresses of liquid steel is negligible compared to the shear stresses of solid steel. Therefore,

the stress state in liquid is always hydrostatic pressure, considering that the liquid velocity

is small under the normal conditions of the continuous casting of steel. It is an obvious

advantage to apply the liquid pressure at the solidification front without solving the stress

state in the liquid in stress model. Moreover, the effect of the gravity to the stress state in

solid is always neglected. Then, the body force term is omitted to make the force balance

equation simpler.

2.2 Hot Tearing Criteria

Hot tear cracking is a common problem encountered during the casting of alloys with

large freezing range including steel. Over the last several decades, much effort has been put

into the understanding of the hot tearing mechanisms [3, 81–86] and the predicting of hot

tearing tendency in a quantitative manner [21,87–90].

Hot tearing is a complex phenomenon which is due to uneven temperature distribution

of the solidifying alloys and involves deformation of the coherent and non-coherent solid

skeleton as well as flow of the interdendritic liquid. Since the later thermal-mechanical

aspects are caused by solidification, many early hot tearing criteria simply consider the

solidification interval of the alloy: the larger the freezing range, the more susceptible the
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alloy will be to hot tearing [91]. This obviously does not satisfy the need to predict hot

tearing cracks accurately. Some recent studies on the hot tearing crack surfaces by Scanning

Electron Microscopy (SEM) [3, 86, 91, 92] have confirmed that both the pore nucleation due

to insufficient liquid feeding of the interdendritic space and the solid fracture of the solid

skeleton contribute to the formation of hot tears. Figure 2.1 and 2.2, taken from the work

of Farup et. al. [3], show the initiation of a hot tear due to pore nucleation and the fracture

of the solid skeleton, respectively. Hot tears in steel are inter-granular usually along prior

austenite (γ) grain boundaries.

Several hot tearing criteria, including solid fracture theories and liquid filling theories,

are proposed based on the understanding of the mechanism of hot tearing.

2.2.1 Criteria based on Solid Fracture Theories

These criteria are based on continuum mechanics theories assuming the hot tearing will

occur at a critical stress [30, 33, 63, 93, 94] or strain in the mushy zone [21, 24, 82, 92, 95–97].

These theories are also used to predict solid fractures. Based on the chosen criteria, these

theories can further break down into categories using a strain criterion, or stress criterion.

Strain criterion theories claim that hot tear cracks appear when the strain of the specific

area exceeds the critical strain. Critical strains are measured by bending tests [98–104],

punch press tests [95, 97, 105], and in-situ melt bending tests [106]. All these tests measure

the critical strain at the solidification front when hot tear cracks initiate.

Stress criterion theories claim that hot tear cracks appear when the stress of the spe-

cific area exceeds the critical stress value. Like the critical strain, the critical stress can

also be obtained from mechanical tests of the alloys higher than their solidus temperature.

These tests include submerged split chill tensile tests [107, 108], tensile tests [109–112] and

compression tests [113].

These empirical criteria are able to reflect realistic conditions and be very simple to

implement into stress models. However, they strongly depend on the experiment conditions,
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such as the temperature and the loading histories, as well as the compositions of the tested

steels. Therefore, they cannot necessarily be applied to general cases.

2.2.2 Critical Strain Criterion

A hot tearing crack criterion which is the best strain criterion available from the existing

literature found by author is judged to be by WON [21] and fitted from the data from 37

experiments [98,99,101–103] as a function of strain rate, ε̇ (sec.−1), and brittle temperature

range, ∆TB (oC), within which liquid feeding is terminated by the coherent dendrites, as

given in Equation 2.1.

εc(m/m) =
0.02821

(ε̇(sec.−1))0.3131 (∆TB(oC))0.8638 (2.1)

This simple empirical equation represents a great deal of experimental efforts at the

elevated temperatures near the solidification temperatures of plain carbon steels. These

experiments bend as-cast slabs containing liquid core in a 3-point bend test at controlled

strain rate (∼ 1×10−3sec.−1). The total strain near the solidification front is calculated from

the pushing distance of the punch head and the curvature of the slab surface. This criterion

takes into account the effects of brittle temperature range, which is defined between the

temperatures when the solid fraction is between 90% and 99% and the average strain rate

within ∆TB. It is seen that larger brittle temperature range and strain rate lead to smaller

critical strain which implies easiness of crack initiation. The brittle temperature range

includes the effects of the chemical compositions and the cooling rate, and the strain rate

reflects the external loading conditions. The trend is the same as those more sophisticated

theories discussed next. Therefore, this criterion, although very simple, is a good candidate

to predict hot tear cracks quantitatively under realistic conditions.

Equation 2.1 is far from ideal due to its empirical nature. It incorporates the effects of

loading conditions, cooling rates, chemical compositions, micro- and macro-segregation, and
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microstructure of the carbon steel to the formation of hot tear cracks through two physical

variables, strain rate and brittle temperature range. As a consequence, the application of this

equation is limited to those steel casting processes with similar operation conditions as those

during the experiments and the units of the two physical variables have to be the same as

those mentioned in Equation 2.1. It is desirable if this equation could be made dimensionless

by fundamental-based dimensional analysis that includes the other physical variables, such

as cooling rate, concentration of chemical compositions, primary and/or secondary dendrite

arm spacings and etc., directly into the equation. This is not a trivial task within the scope

of this work. The development of the more comprehensive hot tear criterion is included in

the recommended future work in Section 8.3 of Chapter 8.

2.2.3 Liquid Feeding Theory

These theories assume that the hot tear forms due to a lack of liquid feeding into the

mushy region. As liquid flowing through the mushy region, the pressure of the liquid drops.

Pores will nucleate as the pressure of the liquid drops below the critical pressure of the solute

gas components. Fluid flow in the interdendritic region can be modelled by Darcy’s Law:

v = −K

µ
∇p (2.2)

where v, K, and p are the velocity vector of the liquid, the permeability of the solid skeleton,

and liquid pressure, respectively.

Niyama [114] proposed a hot tear model based on the assumption that a hot tear initiates

when a cavity is nucleated in the liquid. The mushy zone deformation decomposes into two

components, the solid and the liquid deformations. The solid is assumed to follow power

law, while the liquid stress is calculated according to its ability to flow into the expanding

1-D channel along y direction,

σ =
2µl2

y3

dy

dt
(2.3)
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where µ(Pa · s) is the viscosity of the liquid alloy, l(m) is the length of the mushy zone,

and y(m) is the primary dendrite arm spacing. The mushy zone deformation velocity, dy
dt

,

represents the interdendritic flow speed (m · s−1). Equation 2.3 indicates the longer the

mushy zone and the smaller the primary dendrite arm spacing, the larger stress is produced

under a constant deformation rate. For an alloy whose mushy zone length, l, and primary

dendrite arm spacing, y, are roughly fixed, hot tear cracks are assumed to initiate when the

stress of mushy zone is large enough to initiate a spherical bubble. The critical strain rate

when hot tear cracks form given below is calculated where a spherical pore of diameter y

can be formed.

ε̇(s−1) = 16

(
k2γ9

µ3l6L3

)0.2

(2.4)

where k(N−3 · s−1) is the creep law constant of the solid, ε̇ = kσ3, γ(N ·m−1) is the surface

energy of the alloy liquid, µ(Pa · s) is the dynamic viscosity, l(m) is the thickness of the

mushy zone, and L(m) is the primary dendrite arm spacing.

Feurer [115] proposed another theory assuming hot tear cracks happen when volumetric

shrinkage rate due to solidification exceeds the volumetric liquid feeding rate. Volumetric

shrinkage rate is calculated by,

∂lnV

∂t
|shrinkage =

1

V

∂V

∂t
= −1

ρ

∂ρ

∂t
(2.5)

where V is the volume a control volume, and ρ is the density of the liquid alloy. The

volumetric liquid feeding rate is calculated by Darcy’s Law.

Niyama’s model does not account for the solidification of the alloy, while Feurer’s model

does not account for the mechanical deformation of the mushy region.

2.2.4 RDG Hot Tear Criterion

Recently, Rappaz, Drezet and Gremaud published their mechanistically-based hot tearing

criterion, which is one of the liquid feeding criteria [87] called the RDG criterion.
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The RDG criterion integrates Darcy’s equation over the mushy region to obtain the liquid

pressure drop in the interdendritic liquid over the liquid feeding region of the mushy region.

∆p = 180
λ2
2

(1+β)µ
G

∫ TL

TS

E(T )f2
s

(1−fs)3
dT + 180

λ2
2

vT βµ
G

∫ TL

TS

f2
s

(1−fs)2
dT

where

E(T ) = 1
G

∫
fsε̇pdT

β = ρs

ρl
− 1

(2.6)

where G is the temperature gradient over the mushy zone, vT is the moving velocity of the

solidification front, fs is the fraction of solid, 1 + β is the ratio between solid and liquid

density, µ is the viscosity of liquid steel, and λ2 is the secondary arm spacing. Equation

2.6 establishes the relation between the pressure drop of the interdendritic liquid and the

mechanical strain rate over the mushy zone as well as the solidification. The first term on

the right hand side of Equation 2.6 represents the liquid pressure drop caused by mechanical

deformation, and the second term represents the liquid pressure drop caused by solidification.

If the mechanical strain rate, ε̇p, is assumed constant over the mushy zone, the mechanical

strain rate as a function of the liquid pressure drop is obtained by rearranging Equation 2.6.

ε̇p =
∆p− 180

λ2
2

vT βµ
G

∫ TL

TS

f2
s

(1−fs)2
dT

180
λ2
2

(1+β)µ
G

∫ TL

TS
( 1

G

∫
fsdT ) f2

s

(1−fs)3
dT

(2.7)

Either liquid pressure or the mechanical deformation strain rate can be used to compare

to its critical value to determine the initiation of hot tearing cracks. The RDG criterion

assumes hot tear cracks initiate when gas bubbles nucleate. It is addressed as: hot tear

cracks initiate when [116]

∆p ≥ pcap + ρlgh (2.8)

where pcap is the capillary pressure. RDG criterion can be expressed in another form as: hot

tear cracks initiate when

ε̇p ≥ ε̇crit (2.9)

20



where ε̇crit is calculated using Equation 2.7 by substituting ∆p = pcap + ρlgh.

Equations 2.6 or 2.7 acts as a simplified interdendritic flow model to get liquid pressure

from the mechanical strain rate of the mushy zone because there is lack of mechanical model

to predict interdendritic liquid pressure. The drawback of this approach is that it loses the

interaction between the interdendritic liquid flow and the mechanical deformation. At the

same time, a reasonable mushy zone mechanical model is still needed to get a good strain

rate. Therefore, using RDG model without a good mushy zone mechanical model is lack of

eligibility.

Moreover, RDG model made some simplifications which are too important to neglect

in author’s opinion. Firstly, only solidification shrinkage is considered in RDG model, the

thermal shrinkage of liquid and solid phases are both neglected. This might have great effect

to the hot tearing crack initiation especially when the solid fraction is close to 1. Secondly, the

permeability model only considered the effects of the fraction of solid and the secondary arm

spacing. Permeability experiments showed that both the primary and secondary dendrite

arm spacings will affect the interdendritic flow [117]. The primary dendrite arm spacing

cannot be neglected especially for the flow parallel to the primary dendrite arms. In addition,

grain size also affects the permeability because hot tear cracks are always found at the grain

boundaries.

Both mechanical and permeability models of the mushy zone are needed to use the RDG

hot tearing criterion, Equation 2.8 and 2.9. However, neither of them is available for casting

steels due to lack of experimental data. As a consequence, the strain criterion backed by

critical strain measurements, described in Section 2.2.2, is chosen to predict hot tear cracks

in this work. A mechanical model of mushy zone is initiated in next chapter as a first step

to use more comprehensive hot tear criteria such as the RDG model.
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2.3 Constitutive Models of Mushy and Liquid Steels

Steels in the mushy and liquid regions behave differently than in their solid state. A

proper constitutive model for mushy and liquid steels is very important for a stress model

dealing with materials under solidification especially when the interest is near the solidifica-

tion front such as to predict hot tear cracks.

2.3.1 Treatment of Liquid Steel

Liquid can undergo large shear deformation without generating large stresses. For a

classical Newtonian fluid which liquid steel is always considered to be, the shear stress tensor

is proportional to its velocity gradient.

τ = µ(∇v + (∇v)T ) = 2µε̇′ (2.10)

where µ is the dynamic viscosity of the liquid steel. The strain rate in a typical steel

continuous casting process is much less than 0.1sec−1 [58]. The viscosity of the liquid steel

is 0.056Pa · sec−1 [118]. Thus, the shear stress in the liquid is less than 0.01Pa. This is over

8 orders of magnitude smaller than the stress in the solid on the order of MPa. Therefore,

variations in the stress state in the liquid will not affect the stress state in the solid.

One way to treat the liquid is just to take the liquid out of the system based on the above

argument. Some models do not assemble the liquid elements into the stiffness matrix [44,51,

119], and apply the hydrostatic pressure directly onto the solid/liquid interface. This method

is easy for steady state casting models where the solidification front is stationary. When the

solidification front moves with time, this method involves another numerical challenge, the

adaptive meshing technique [120].

An alternative way to deal with the liquid elements in transient models [24, 31, 32, 35,

38, 41, 48] is to use a fixed mesh and apply appropriate constitutive models for mechanical

behavior of those liquid elements based on the temperature field. This avoids adaptive
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meshing. However, a robust numerical integrating technique is needed to integrate two very

different constitutive models, solid and liquid, over one domain. It is also common to apply

an artificial low value of elastic modulus to those liquid elements to avoid integrating two

different constitutive models [19,20,35,36]. This is acceptable for the models only interested

in the stress in solid, but not for the models that need realistic stress/strain distribution

such as those recent works [48,53,121] that try to predict hot tear cracks in the mushy zone.

2.3.2 Mechanical Behavior of Material in the Mushy State

As research interests turn to how hot tear cracks initiate and propagate, a realistic con-

stitutive model of the partially solidified metal is needed to get the stress/strain distribution

within the mushy region because hot tear cracks initiate in the nearly solidified mushy region

due to a lack of liquid feeding [114]. Another motivation is that it will benefit the mushy

state metal working industry which processes materials in the temperature range that both

solid and liquid exist [122].

Gunasekera’s Model

Many pioneer researchers in as early as late 1960’s and early 1970’s conducted the study of

the mechanical strength of the semi-solid aluminum alloys with equiaxed structure by tensile

test [96] and compression test [123, 124], and the rheology behavior of the lead alloys by

compression test [125] and shear test [126,127]. Their results revealed that the macroscopic

deformation of the mushy state materials is dominated by the amount of liquid component

because the liquid makes the solid grains easily slip, deform, and rotate when the overall

deformation is within 5% [123]. The shear test indicated that in the mushy region, the

partially solidified metals are not Newtonian fluids anymore. The viscosity of the mush

increases dramatically as the volume fraction of the liquid drops. The mushy viscosity is less

than one order of magnitude lower than that of the solid when the volume fraction of the
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liquid is below 40%. Since then, the mechanical behavior of the mushy state materials has

been receiving increasing attentions [128–132] in aluminum industry.

Based on these observations, Gunasekera proposed a theoretical constitutive model of

metals in the mushy state following the classical J2 plasticity theory used in solid state

materials [122]. This model has the following form:

σmushy = δσsolid

where

δ = 1− (βfl)
2/3

(2.11)

where σmushy and σsolid are the stresses over a control volume with mush and solid, re-

spectively. Stress in the solid can take a traditional solid constitutive model. fl is the

volume fraction of the liquid, and β is a constant that depends on the geometric model

chosen. Gunasekera calculated the value of β for different geometries of the solid and liquid

components in the mushy region, and compared the results to experimental measurements of

mushy state metal flow stress. This model, although works well for semi-solid metal forming

applications [133, 134], only predicts the overall behavior of the mushy region. It is limited

for prediction of hot tear cracks because some hot tear crack criteria require information on

the interdendritic liquid pressure, which the Gunasekera model could not predict.

Several experimental works studying the mechanical behavior of steels in mushy state

have been published recently. Tseng et. al. [113] conducted compression tests in high carbon

steels (Carbon content from 0.95−1.10%), and fitted the results to the following relationship

between the flow stress and the material and the solid fraction:

σf = AeBfs (2.12)

where σf and fs are the flow stress and the solid fraction, respectively. A and B are corre-

lation constants. When the strain of the mushy zone is below 4%, the values of A and B
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are 0.6062 and 2.235, respectively. As the strain of mushy zone increases, the value of A

decreases, while the value of B increases. This indicates that significance of the fraction of

solid increases as the deformation of mushy zone increasing.

Seol et. al. [112], Shin et. al. [111] and Mizukami et. al. [110] conducted tensile tests

to measure the tensile strength of the carbon steels in mushy state and the Zero Ductility

Temperature (ZDT) as well as the Zero Strength Temperature (ZST). Their results showed

that steels in the mushy state fail in a brittle manner due to the liquid film existing between

the dendrites and the grain boundaries. The ZDT is very close to the solidus temperature.

They also observed that the strength of the mushy state steels depends on the fraction

liquid until above ZST where the steels lose all of their strength. The ZST is reported at

the temperatures where the solid fraction between 60% and 80%.

These tensile strength measurements of steels in the mushy state make the overall mushy

region constitutive model applicable to predict hot tear cracks when critical stress or strain

based hot tear criterion is used. Some models [48, 53, 63, 135, 136] included a mushy state

constitutive model based on the work of Lee and Kim on the plastic behavior of porous

metals [137] which is similar to Gunasekera’s model. However, the ratio of the flow stresses

between the solid and mushy states is in a different form as follows:

δ = fs−fc
s

1−fc
s

ZDT < T < ZST

δ = 0 ZST < T
(2.13)

where δ has the same meaning in Equation 2.11, and fs and f c
s are the current fraction of

solid and the fraction of solid at ZST, respectively.

Two-Phase Models Based on Liquid Feeding

A new approach, modeling mushy material by a volume averaged two-phase model [138],

has emerged in the last couple of years. These models [128,139–143] solve the two sets of cou-

pled momentum conservation equations and the interdendritic flow equation (Darcy’s Law),
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as well as the mass conservation equation at the same time to predict both the stresses/strains

in the solid skeleton and the pressure drop and the velocity field of the interdendritic liquid.

The overall behavior of the mushy region is given by the volume average of its components

as:

σmushy = fsσs − flpI (2.14)

where the subscript s, l, and mushy represent the solid, liquid and mushy region, respectively.

I is the identity tensor having the same order as the stress tensor. The addition stress tensor

of liquid [144], τ l, is always neglected based on the low Reynold’s number of the Newtonian

flow through dendrite structures.

This model, although under development, has great potential for broader applications,

especially for predicting hot tear cracks, because it covers both of the hot tear criteria, based

on thermal induced deformation mechanism and liquid feeding mechanism as discussed in

the previous section.
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2.4 Figures and Tables

Fig. 2.1: Sequence showing nucleation of a hot tear as two pores in an initially healed hot
tear [3]
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Fig. 2.2: SEM image with close-ups of a torn-apart solidified bridge on a hot tear surface in
an Al-3wt.% Cu alloy showing a deformed surface structure on the main part of the spike

and an undeformed draped-looking shape near the root [3]
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Chapter 3. Modeling of Semi-Solid Steel

3.1 Governing Equations in Mushy Region

3.1.1 Density Constitutive Equations

Density is a function of temperature, T , and pressure, p, according to the theory of

thermodynamics [144]. Consider a material volume V (Figure 3.1) with original dimensions

dx0, dy0, and dz0 along the three axes x, y, and z, respectively. Assuming mass is conserved

within V , then the following expression is true according to mass conservation.

ṁ =
D(ρV )

Dt
= 0 (3.1)

ρ0V0 = ρV (3.2)

where ρ0 and V0 are the density and the volume at an arbitrary chosen state, T0, and p0.

Once the material volume deforms from its original shape because of a change in temperature

or pressure or both, the lengths of its three dimensions change as a function of its true strain,

ε = ln l
l0

, as follows.

dx = dx0e
εx

dy = dy0e
εy

dz = dz0e
εz

(3.3)

where εx, εy and εz are the strain components along axes x, y, and z. It is assumed that the

liquid elements do have rigid rotation. This is valid in CON2D where the liquid turbulence

is neglected.

Taking the material volume as

V0 = dx0dy0dz0

V = dxdydz
(3.4)
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Substituting Equations 3.3 and 3.4 into Equation 3.2 yields

ρ = ρ0e
−tr(ε) (3.5)

where tr(ε) is the trace of the infinitesimal strain tensor, ε, which is defined as

ε =
1

2
(∇u +∇uT ) (3.6)

Thus, the time derivative of density can be expressed as

Dρ

Dt
= −ρ0e

−tr(ε)tr(ε̇) = −ρtr(ε̇) (3.7)

where ε̇ is the total strain rate tensor, which is defined as

ε̇ =
1

2
(∇v +∇vT ) (3.8)

3.1.2 Conservation of Mass and Momentum

Mass Conservation of Single Phase Solid

The principal of mass conservation states: mass is neither created or consumed [144].

Applying the chain rule to Equation 3.1, it can be rewritten over an arbitrary material

volume, V (t), as:

DM

Dt
=

Dρ

Dt
V + ρ

DV

Dt
= 0 (3.9)

where M is the total mass in the material volume, V (t). Dividing the volume, V , from the

right hand side of Equation 3.9 generates

Dρ

Dt
+ ρ

1

V

DV

Dt
= 0 (3.10)
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Considering an arbitrary volume, the second term on the LHS of Equation 3.10 can be

rewritten as the following, based on definition of strain rate [145].

1

V

dV

dt
= tr(ε̇) (3.11)

1

V

dV

dt
= ∇ · v (3.12)

where v is the velocity vector of the material points. Equations 3.11 and 3.12 are the

volumetric deformation rate, respectively. When the material points have non-zero velocity

with respect to their frame of reference, D
Dt

is the material derivative operator

D

Dt
=

∂

∂t
+ v · ∇ (3.13)

Combining Equations 3.10, 3.12 and 3.13 together, the classical mass conservation equation

(Equation 3.1) can be written as [144]

∂ρ

∂t
+∇ · (ρv) = 0 (3.14)

To better understand the physical meaning of Equation 3.14, integrating it over an arbitrary

volume, V , gives ∫

V

∂ρ

∂t
dV = −

∫

V

∇ · (ρv)dV (3.15)

Applying the divergence theorem, the RHS of Equation 3.15 becomes the surface integral

over the boundary of the volume, V

∫

V

∂ρ

∂t
dV = −

∫

A

ρv · n̂dA (3.16)

where n̂ is the normal vector of the surface A. Equation 3.16 shows that mass flow across

the volume boundary, A, is needed to compensate the density change due to thermal shrink-

age/expansion or mechanical deformation [144].
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Substituting Equations 3.7 and 3.11 into Equation 3.14 leads to

−tr(ε̇) + tr(ε̇) = 0 (3.17)

This trivial equation indicates the mass conservation is automatically taken care of in solid

mechanics, so long as Equations 3.7 and 3.11 are satisfied.

Mass Conservation of Single Phase Liquid

Equation 3.14 is applicable to any single-phase domain including either solid or liquid.

Classic solid mechanics approach does not require explicit satisfaction of it as Equations 3.7

and 3.11 are always satisfied. However, in fluid dynamics, the mass conservation equation

has to be explicitly included in the governing equations. This requires Equation 3.14 to be

solved for problems such as continuous casting, where the liquid metal is in an open space,

and is generally free to flow into and out of the computational domain.

Two Phase Region Mass Conservation

A formal analysis of the mushy region using spacial averaging technique over an arbitrary

material volume containing both solid and liquid (Figure 3.2) yields the following equations

for mass conservation [138]:

∂(fsρs)

∂t
+∇ · (fsρsvs) = Γs (3.18)

∂(flρl)

∂t
+∇ · (flρlvl) = −Γs (3.19)

where fl, fs, ρl, ρs, vl, and vs are the volume fractions, densities, and velocity vectors of liquid

and solid spacial averaged over V in Figure 3.2 , and Γ is the specific mass flux (Kgm−3s−1)

across the internal solid/liquid interface δS in Figure 3.2 due to phase transformation. By

assuming that there is no pore or crack formation in the mushy zone, the relation between
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the fraction of solid and liquid phase is:

fs + fl = 1 (3.20)

Combining Equations 3.18 and 3.19 together gives

∂ < ρ >

∂t
+∇ · (fsρsvs) +∇ · (flρlvl) = 0 (3.21)

where < ρ > is defined to be the spacial averaged density of the two phase region as

< ρ >= fsρs + flρl (3.22)

Adding ∇ · (flρlvs) to both sides of Equation 3.21 and combining terms leads to

D < ρ >

Dt
+ < ρ > ∇ · vs + γV = 0 (3.23)

where γV = ∇ · [flρl(vl − vs)]. Note that the first two terms of Equation 3.23 are analogous

to the single phase mass conservation, Equation 3.14, if the mushy region is considered as

a single material in an averaged manner. An argument left is whether vs can represent

the average velocity of the whole mushy region. This is a reasonable approximation for

columnar structures or for an equiaxed structure below the coherency temperature, where a

solid skeleton exists. The last term, γV , in Equation 3.23 incorporates the phenomenon of

interdendritic fluid flow across the material volume boundary δV in Figure 3.2.

3.1.3 Momentum Balance

The momentum balance can then be expressed by [140]:

p̄k∇fk +∇ · (fkσk) + M k + fkρkg = 0 (3.24)
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where σk is the Cauchy stress tensor of liquid and solid phases, M k (Kgm−2s−2) is the

momentum transferred between the liquid and solid phases due to interdendritic fluid drag,

g is the acceleration vector of gravity, p̄k is the average pressure at the solid and liquid

interface. k represents either solid, s, or liquid, l. The momentum due to velocity gradients

is neglected. In the liquid, this is due to the slow fluid flow, in the mushy zone which is of

most interest. In the solid, this is due to the slow velocity under thermal deformation.

The stress tensor of phase k can be decomposed into the deviatoric stress tensor, σ
′
, and

pressure, pk, as follow:

σk = σ
′
k − pkI (3.25)

where I is the identity tensor.

The average pressure at the solid and liquid interface δS, p̄k, equals to the liquid pres-

sure in the material volume, pl, due to the local instantaneous pressure equilibrium. The

momentum balance equations for the solid and liquid phases (Equation 3.24) then can be

simplified as:

pl∇fs +∇ · (fsσs) + M + fsρsg = 0 (3.26)

pl∇fl +∇ · (flσl)−M + flρlg = 0 (3.27)

Adding Equations 3.26 and 3.27 leads to the momentum governing equation for the mushy

region:

∇ · (fsσs + flσl) + (fsρs + flρl)g = 0 (3.28)

Substituting Equation 3.22 into Equation 3.28 and defining a phase averaged stress, < σ >,

< σ >= fsσs + flσl (3.29)
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similar to the volume average stress of particulate composite materials leads to

∇· < σ > + < ρ > g = 0 (3.30)

This momentum balance equation is the same as the momentum balance equation in

classic solid mechanics if the two-phase mushy region is considered as a single phase material

in a spatial averaged manner.

3.2 Constitutive Model in Mushy Region

3.2.1 Elastic Constitutive Model

It is assumed that the mushy steel follows the generalized Hook’s law as if it was single

phase solid steel.

σ = C : εe (3.31)

where the stress tensor, σ, and elastic strain tensor, εe, are the spacial average values as

defined in the previous section. C is the fourth order tensor containing the elastic constants.

The elasticity tensor C contains only two independent components by assuming the steel in

the mushy region to be isotropic. Then, the isotropic linear elastic stress-strain relation in

indicial notation is

σij = λδijε
e
kk + 2µεe

ij (3.32)

where λ and µ are known as Lame constants. In particular, µ = G, the shear modulus. If we

choose Young’s modulus and Poisson’s ratio as the two elastic constants, the Lame constants

are

λ =
νE

(1 + ν)(1− 2ν)
(3.33)

µ =
E

2(1 + ν)
(3.34)
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Taking the trace on both sides of Equation 3.32 leads to volumetric constitutive relation

σkk = 3Kεe
kk (3.35)

where K = λ+ 2µ
3

is the bulk modulus. It may also define the deviatoric constitutive relation

by taking the deviatoric part of Equation 3.32

σ′ij = 2µε′eij (3.36)

where σ′ij and ε′eij are the deviatoric stress tensor and elastic strain tensor.

3.2.2 Inelastic Constitutive Model

The mass conservation, Equation 3.23, momentum balance, Equation 3.30, and Darcy’s

Law, Equation 2.2, need to be solved together to predict the mechanical response for a given

temperature distribution [143,146]. This is too complex and computationally expensive to be

feasible for continuous casting problems. Instead, the interdendritic flow can be considered

as a kind of viscoplastic strain because they have the same features:

• It is a permanent deformation because it cannot be recovered once the external load

is taken off.

• It is time dependent.

Modeling the mushy zone deformation in this way incorporates the interdendritic flow in a

solid mechanics manner without solving fluid flow equations. However, a constitutive model

of the mushy region material is needed to define the viscoplastic relation between the stress

and strain in the mushy zone.

The microstructure of a solidifying material influences its behavior under thermal or

mechanical loading. For an equiaxed structure, such as often encountered during aluminum

DC casting and semi-solid processing, its mechanical behavior depends greatly on the volume
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fraction of the solid as indicated by the experiments of metals in semi-solid state [109–

113]. Semi-solid metals with equiaxed structures behave as liquid at low solid fraction

state (fs < 40%). Solid grains and particles suspended in the liquid metal increase the

viscosity of the semi-solid material [126, 127]. The stress in the solid grains approximately

equals the hydrostatic pressure of the liquid as they are surrounded by the liquid without

much interaction among the solid grains. Therefore, metals in the low solid fraction mushy

region can be modelled as a non-Newtonian fluid. As the solid fraction increases above

40% to 60%, the adjacent solid grains begin to connect with each other and form a solid

skeleton saturated with liquid metal. Stress could be transmitted through the solid skeleton,

and strength begins to build up as the solid fraction increases [109–113]. For a columnar

structure, however, which is often encountered during continuous casting of steel, the solid

skeleton exists even if the solid fraction is fairly small as the dendrites always connect to the

fully solidified metal.

Some constitutive models have been proposed to simulate the behavior of the mushy

region with high solid fraction (fs > 60%) for equiaxed structures [132,143,147,148]. Farup

et. al. simply used the single solid phase constitutive equation to model the mushy region

at high solid fraction by assuming the contribution to the stress state from the liquid is

negligible [132]. However, the liquid can have great effect on the stress state of the whole

mushy region when the fraction of solid is close to 100% because:

1. Driving liquid into and out of a high solid fraction mushy region introduces extra re-

sistance to the external force in addition to the resistance deforming the solid skeleton.

2. Liquid which is totally surrounded by a continuous skeleton can take compression and

tensile external loads without gas bubble nucleation.

Moreover, liquid pressure is also an important parameter to predict porosity formation which

makes it beneficial to include liquid in the mushy zone.
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Another way to model the mushy region is to treat it as a porous material saturated with

liquid. Martin et. al. [89, 143, 147, 148] proposed a constitutive model for porous metallic

materials saturated with liquid based on the models for dry porous materials [149, 150].

These methods should also be applicable to the columnar structures. A similar method is

adopted in this work to develop the constitutive model of the mushy zone and extend to

liquid model.

Flow Rule in the Mushy Zone

The mechanical behavior of metals in the semi-solid state is assumed to follow a “unified”

viscoplastic flow law [20] in an isotropic manner. This “unified” viscoplastic model assumes

viscoplastic flow appear at any stress state. There is no yield criterion explicitly defined

in this model. Yield surface can be represented by the flow surface when the strain rate

is sufficiently slow (10−5sec.−1). The difference in behavior between semi-solid metals and

single phase solid metals is that the viscoplastic dissipation is not only a function of the

second invariant of their stress tensor (Von Mises stress), but also a function of the first

invariant of the stress tensor (tr(σ)). The dependence of the first invariant of the stress

tensor comes from the thermal and mechanical induced deformation of the interdendritic

liquid and interdendritic fluid flow described by Darcy’s Law. The mechanical pressure, p,

and the von Mises stress, σvm, are defined in solid mechanics manner (positive pressure being

tensile) which is opposite to Equation 3.25 in fluid dynamics manner (positive pressure being

compression).

p =
1

3
tr(σ) (3.37)

σvm =

(
3

2
σ′ : σ′

) 1
2

(3.38)
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where σ′ is the deviatoric stress tensor defined as

σ′ = σ − 1

3
tr(σ)I (3.39)

The viscoplastic dissipation energy also depends on the fraction of solid, fs. The stress

tensor here is the phase-averaged stress in Equation 3.29 over the control volume V in Figure

3.2.

The constitutive model is derived according to classical viscoplastic theory [151]. The

viscoplastic potential function, Φ, is assumed to be a function of the mechanical pressure, p,

and the von Mises stress, σvm for an isotropic material. The effect of the third invariant is

neglected. The viscoplastic strain rate tensor, ε̇in, follows the normality rule

ε̇in =
∂Φ

∂σ
(3.40)

where

Φ = Φ(p, σvm) (3.41)

where p and σvm include implicit dependence on phase fractions. Substituting Equation 3.37

into Equation 3.39 and rearranging yield

σ = pI + σ′ (3.42)

Applying the chain rule to Equation 3.40 leads to

ε̇in =

(
∂Φ

∂p

)(
∂p

∂σ

)
+

(
∂Φ

∂σvm

)(
∂σvm

∂σ

)
(3.43)

Substituting Equations 3.37 and 3.38 into Equation 3.43, it can be shown that

ε̇in =

(
∂Φ

∂p

)(
1

3
I

)
+

(
∂Φ

∂σvm

)(
3

2

σ′

σvm

)
(3.44)
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Several forms of the potential function have been proposed during the last decade. A

detailed literature review can be found in reference [147]. The simplest form of the equivalent

stress, σeq, is adopted here,

σeq =
(
Ap2 + Bσ2

vm

) 1
2 (3.45)

where A and B are the functions of the solid fraction. From Equations 3.45, 3.37 and 3.38,

it can be shown that

∂σeq

∂σ
: σ = σeq (3.46)

The viscoplastic strain rate, ε̇in
eq, is defined such that its product with the equivalent

stress, σeq, produces the same viscoplastic dissipation energy as the following inner product

of strain rate tensor and stress tensor.

ε̇in : σ = ε̇in
eqσeq (3.47)

Applying the chain rule to Equation 3.40 yields

ε̇in =
∂Φ

∂σeq

∂σeq

∂σ
(3.48)

Combining Equations 3.46 and 3.48 leads to

ε̇in : σ =
∂Φ

∂σeq

σeq (3.49)

The equivalent strain rate can be found by comparing Equations 3.47 and 3.49

ε̇in
eq =

∂Φ

∂σeq

(3.50)
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Then, from Equations 3.45, 3.48 and 3.50, the viscoplastic strain rate tensor is represented

in terms of the equivalent strain rate as

ε̇in =
ε̇in
eq

σeq

(
1

3
ApI +

3

2
Bσ′

)
(3.51)

The equivalent strain rate is found by substituting the trace and the deviatoric parts of

Equation 3.51 into Equation 3.45:

ε̇in
eq =

(
1

A
tr(ε̇in)2 +

2

3

1

B
(ε̇in′ : ε̇in′)

) 1
2

(3.52)

where the deviatoric strain rate tensor is also found from

ε̇in′ = ε̇in − 1

3
tr(ε̇in) (3.53)

Assuming the behavior of metals at elevated temperature follows the power law

ε̇in
eq = K(T )σn

eq (3.54)

where K(T ) is the power law constant as a function of temperature, and n is the power

coefficient. This leads to the potential function from 3.43 as follows.

Φ =
K(T )

n + 1
σn+1

eq (3.55)

Equations 3.45, 3.51, and 3.52 establish the relations between the equivalent strain rate

and the full 3-D strain rate tensor. This makes the viscoplastic strain tensor to be calculated

by numerically integrating a scaler viscoplastic strain rate instead of a strain rate tensor.

Note that when the viscoplastic energy does not depend on the mechanical pressure p, then

A = 0 in Equation 3.45. If in addition, B = 1, then Equations 3.45, 3.51, and 3.52 become

classical Prandtl-Reuss relations.
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Interdendritic Fluid Flow

The pressure dependence of the constitutive model of the mushy steel comes from the

interdendritic flow due to thermal and mechanical deformation of the solid skeleton for the

dendritic structure and equiaxed structure below the coherency temperature. The pressure

and velocity of the interdendritic flow is modelled by the liquid momentum balance equation,

Equation 3.27, where the drag momentum, M , is modelled by Darcy’s Law.

M = µf 2
l K−1 · (vl − vs) (3.56)

Substituting Equations 3.25 and 3.56 into Equation 3.27 leads to

−fl∇pl +∇ · (flσ
′
l)− µf 2

l K−1 · (vl − vs) + flρlg = 0 (3.57)

Assuming the liquid steel as a Newtonian fluid with constant viscosity, the liquid stress

tensor is

σl = µ(∇vl +∇vT
l ) (3.58)

Taking the deviatoric part of both sides of Equation 3.58 yields

σ
′
l = µ(∇vl +∇vT

l )− 2µ

3
(∇ · vl)I = 2µε̇

′
fl (3.59)

Consider the liquid steel as an incompressible fluid, then

∇ · vl = 0 (3.60)

Substituting Equations 3.59 and 3.60 into Equation 3.57 leads to

−fl∇pl + 2µ∇2(flvl)− µf 2
l K−1 · (vl − vs) + flρlg = 0 (3.61)
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where µ is the dynamic viscosity of the liquid steel (0.056Pas at 1550oC and assumed

constant) , and K is the permeability tensor that describes the permeability of the mushy

zone in 3-D space. Equation 3.61 is a modified Navier-Stokes equation with Darcy’s term

representing the drag momentum between the solid and the liquid in the mushy zone. The

inertia term is neglected which is valid for a low velocity field such as the interdendritic flow.

Equation 3.61 can be simplified into different forms at different locations within the

mushy zone: low solid fraction region, coherency region, and the region in between. Details

for each of these cases will be presented in Section 3.2.3.

Permeability

Permeability of the mushy region is the key parameter to model the mushy zone me-

chanical behavior. Its value depends on the microstructure of the mushy zone, equiaxed or

columnar, the solid and liquid fractions, the primary and secondary dendrite spacings [117].

Permeability is described by the permeability tensor, K, which is a symmetrical 2nd order

tensor. As a stress tensor, all components of the permeability tensor are non-zero in general.

However, in a certain frame of reference whose axes of the coordinate system are along the

principal flow directions, the off-diagonal components in K vanish. Each main diagonal term

represents the permeability along one principal direction.

The permeability of a columnar-dendrite structure is anisotropic due to its directional na-

ture [152–154]. The principal flow directions are parallel and normal to the primary dendrite

arms. Therefore, the permeability tensor for columnar structures in a coordinate system with

one axis (axis 1 for example) along the primary dendrite arms has non-zero main diagonal

components, k11, k22, and k33, only. The dendrite structures in the plane perpendicular to

the primary dendrite arms are considered isotropic when the material volume, V , contains

enough number of dendrites and the secondary dendrite arms are randomly orientated. As

a consequence, k11 6= k22 = k33. Poirier proposed several empirical equations of the perme-

ability parallel and normal to the primary dendrite arms by fitting several measurements
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of Pb-Sn systems [117, 152, 155] and borneol-paraffin systems [153, 154]. He indicated that

both primary and secondary dendrite arm spacings influence the permeability of the flow

normal to the primary dendrite arms, while only primary dendrite arm spacing influences

the permeability of the flow parallel to the primary dendrite arms.

A more special case is that all of the main diagonal components of the permeability tensor

are equal. This corresponds to a structure with isotropic permeability, such as an equiaxed

dendrite structure. For the partially solidified metals with equiaxed dendrite structure such

as aluminum, the permeability can be considered isotropic given that enough randomly

orientated dendrites are included in the material volume considered. Kozeny-Carman model

is always applied for the equiaxed dendrite structures [86].

K =
d2

2

180

f 3
l

(1− fl)2
I (3.62)

where fl is the fraction of liquid and d2 is the secondary dendrite arm spacing. This model

claims that the primary dendrite arm spacing does not influence the permeability.

3.2.3 Inelastic Constitutive Models for Different Regions in Mushy Zone

Constitutive models are presented here for three regions, low solid fraction region, co-

herency region, and the region in between. Then, adopting the constitutive model for the

isotropic mushy zone (Equations 3.51, 3.52, and 3.53), values for A and B are derived for

each region.

Low Solid Fraction Region

In this region the solid fraction is so low that the solid does not influence fluid movement.

Therefore, it is reasonable assume the permeability to be infinity (K → ∞). Following the

same argument (solid fraction does not influence liquid movement), the fraction of liquid

is assumed to be constant within this region (∇fl = 0). As a consequence, Equation 3.61
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becomes the Navier-Stokes Equation.

−∇pl + 2µ∇2(vl) + ρlg = 0 (3.63)

Using Equation 3.59 to replace the second and third terms in Equation 3.63 by the deviatoric

liquid stress tensor (σ
′
l), Equation 3.63 can be written in the format of solid mechanics as

∇ · σl + ρlg = 0 (3.64)

where σl = σ
′
l − plI. Using the constitutive model of Newtonian fluid

σl = 2µε̇ (3.65)

The mushy region with low solid fraction can be considered to be an isotropic material.

Then,

σeq = 2µε̇in
eq (3.66)

where σeq and ε̇in
eq are given in Equations 3.45 and 3.52. Comparing Equations 3.65, 3.66,

3.45, 3.51, and 3.52, gives A = 3 and B = 2
3
.

Liquid Impenetrable Region

The solid fraction in this region is so high that the remaining liquid is totally surrounded

by solid and isolated from the liquid pool. This is true when the temperature of the mushy

region is lower than the coherency temperature and a continuous solid structure forms. Thus,

the permeability is zero.

Rearranging Equation 3.61 gives

vl − vs =
K

µf 2
l

· [−fl∇pl + 2µ∇2(flvl) + flρlg
]

(3.67)
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As the permeability equals to zero, Equation 3.67 yields that

vl − vs = 0 (3.68)

This implies that when K = 0, the whole mushy region will act as single phase solid,

even where the fraction of liquid is not zero yet. Thus, the viscoplastic deformation will

follow the solid constitutive model. The solid viscoplastic strain is incompressible which

implies tr(ε̇in) = 0. Taking trace of both sides of Equation 3.51 immediately determines that

A = 0. This indicates that the viscoplastic energy dissipation does not depend on mechanical

pressure, but only depends on the deviatoric part of the stress tensor, σ′. Equations 3.45

and 3.51 then becomes

σeq = B
1
2 σvm (3.69)

ε̇in =
ε̇eq

σeq

3

2
Bσ′ (3.70)

In order to get the value of B in Equations 3.69 and 3.70, an arbitrary material volume V

shown in Figure 3.3 is considered under a uniform inelastic strain εin. The stress and strain

rate relation is described by the constitutive equation for the solid phase as:

ε̇in
vms

= K(T )σn
vms

(3.71)

where ε̇in
vms

and σvms are the von Mises inelastic strain rate and stress of the solid phase

material, respectively. Then, the spatially averaged inelastic strain and stress within the

material volume V are as follows:

σeq = B
1
2 fsσvms (3.72)

ε̇eq = ε̇vms (3.73)
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The constitutive equation for the solid phase is adopted for the coherent mushy zone as

Equation 3.54. Comparing Equations 3.54, 3.71, 3.72 and 3.73, B = f−2
s .

Region Between the Nearly Liquid and Liquid Impenetrable Regions

In this region, liquid flow is limited by the solid skeleton and the liquid pressure is much

different than its ferrostatic pressure because of the momentum loss when the liquid flow

through this low permeability region. Equations 3.23 and 3.61 need to be solved concurrently

to predict the average interdendritic flow velocity and the liquid pressure within the mushy

zone. To solve these two equations within the scope of the current solid mechanics, several

assumptions are made as follows:

• The reference density, ρ0, in Equation 3.7 is chosen to be the liquid density at liquidus,

ρl(Tliquidus).

• The deformation of the mushy zone is limited by the solid skeleton, which leads to

vmushy = vs (3.74)

where vmushy and vs are the velocity of the whole mushy zone and the solid skeleton,

respectively.

• Mushy zone deformation is small so that the classical small deformation theory is

applied here. Moreover, this small deformation assumption implies

eε ≈ I (3.75)

• The momentum due to inertia, diffusion, and shear deformation as well as the effect

of gravity of the interdendritic liquid are negligible compared to the Darcy’s term in

Equation 3.61.
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The total strain, ε, is further decomposed into the sum of the thermal strain, εth, elastic

strain, εe, and inelastic strain, εin as:

ε = εth + εe + εin (3.76)

εin =





εpl in solid

εflow in liquid and mush
(3.77)

The first two assumptions as well as Equation 3.7 simplify Equation 3.23 to:

∇ · (fl(vl − vs)) = −tr(ε̇e + ε̇th)e
tr(ε̇e+ε̇th) + tr(ε̇)etr(ε̇) (3.78)

Define the volumetric flow strain rate as:

tr(ε̇fl) = ∇ · (fl(vl − vs)) (3.79)

Taking the small strain assumption (Equation 3.75), the mass conservation equation turns

to be a strain decomposition equation the same as a classical solid strain decomposition

equation as:

tr(ε̇) = tr(ε̇e) + tr(ε̇th) + tr(ε̇fl) (3.80)

The last assumption makes Equation 3.61 become Darcy’s law:

fl(vl − vs) = −K

µ
· ∇pl (3.81)

Taking ∇· on both sides of Equation 3.81 and using Equation 3.79 to eliminate the velocities

give the constitutive equation of the interdendritic liquid.

tr(ε̇fl) = −∇ ·
(

K

µ
· ∇pl

)
(3.82)
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Unlike the classical constitutive equation of the Newtonian fluid, Equation 3.65, the

strain rate in Equation 3.82 is a function of pressure gradient. Equation 3.82 is difficult

to implement into a solid mechanics model such as CON2D because only displacements

are discretized and solved in the modeling domain. The pressure is calculated from the

solved displacements for each element. Equation 3.82 cannot be addressed explicitly by

this standard displacement formulation. This difficulty may be avoided by using a mixed

formulation method in which both displacement and pressure are primary variables at each

node [156]. However, the mixed formulation will bring more complexity and stability issues

[156].

An approximate method based on the displacement formulation used in CON2D is pro-

posed here. CON2D adopts a parametric 6-node parabolic triangular stress element for the

stress model. A parabolic element provides constant pressure gradient, ∇p, within it. Thus,

in an element, Equation 3.82 becomes

tr(ε̇fl) = −∇ ·
(

K

µ

)
· ∇pl (3.83)

For a 2-D system as CON2D, the permeability tensor for columnar dendrite structures

is as follows:

K =




kxx kxy

kyx kyy


 =




k1 0

0 k2







cosθ sinθ

−sinθ cosθ


 (3.84)

where k1 and k2 are the permeability parallel and normal to primary dendrite arms, re-

spectively. θ(x, y) is the angle between the x-axis of the global coordinate system and the

direction of primary dendrite arms. The permeability tensor is a function of fraction of liquid

which is finally a function of temperature. Thus, each node has its permeability Ki where i

is the node number. Then, the permeability of any point within an element is as follows

K =
6∑

i=1

NiKi (3.85)
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where Ni is the shape function of the 6-node element shown in Equation B.3. The perme-

ability gradient is

∇ ·K =





∑6
i=1

∂Ni

∂x
kxxi +

∑6
i=1

∂Ni

∂x
kxyi

∑6
i=1

∂Ni

∂y
kxyi +

∑6
i=1

∂Ni

∂y
kyyi





(3.86)

The constant pressure gradient is calculated by the pressure values at three Gauss points

of each element as follows:

∇pl = [B]





tr(σ1)

tr(σ2)

tr(σ3)





(3.87)

where [B] is the B matrix of a triangle formed by three Gauss points and shown in Equation

A.2. σ1, σ2, and σ3 are the stress tensor of each Gauss point, respectively.

Comparing the trace of Equation 3.82 and Equation 3.51, it can be determined that

A = − σeq

ε̇in
eqpl

∇ ·
(

K

µ
· ∇pl

)
(3.88)

The value of B = f−2
s following the same argument as described in the previous section. In

this region, σeq and ε̇in
eq are given by Equations 3.45 and 3.52.

3.2.4 Discussion

This model assumes the liquid steel to be an incompressible fluid, which means the

dilatational viscosity [144] is neglected. Even the liquid is incompressible, the overall mushy

material becomes compressible when the parameter, A, discussed previously is nonzero. This

compressibility is purely due to the interdendritic fluid flow through the solidifying dendrites.

Note that the stress/strain states in the liquid are solved using the solid mechanics approach

with the constitutive model (Equations 3.45, 3.51, and 3.52) described earlier in this section.

The inelastic constitutive model in the liquid (Equation 3.66) forces the deviatoric stress in

the liquid to be close to zero and pressure to be close to the hydrostatic pressure (ρgh) in
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the liquid and low solid fraction regions regardless of the strain state within the scope of the

continuous casting process. Under this stress level, the volumetric elastic strain is also forced

to be very close to zero by choosing an elastic modulus of the liquid steel (10GPa in this

work) and the Poisson’s ratio the same as that used in the solid (0.3). This elastic modulus

is much larger than the other terms in the system and thus reasonably approximates the

impressibility of the liquid steel.

The third approach in the intermediate permeability region is the most general model to

predict the behavior of the mushy zone. Equations 3.45, 3.51, and 3.52 collapse to classical

equations of von Mises stress, strain and Prandtl-Reuss relations, respectively, in the total

solid region (fs = 100%). They also transform to the equations of the second approach in

the liquid impenetrable region when the solid fraction is so high that the permeability is

zero. In these two cases (fs = 100% or A = 0), only the deviatoric part of the viscoplastic

strain rate tensor is nonzero. The sum of the main diagonal terms of the viscoplastic strain

rate tensor is always zero indicating no volumetric viscoplastic deformation occurring.

As liquid fraction increase, A and B increase, which act as a penalty to drive liquid

pressure towards ferrostatic pressure (pl → ρgh) and pressure gradient towards small values.

In regions with very low solid fractions (K →∞ and fs → 0), A and B both go to infinity.

This is due to the permeability model being inappropriate in pure liquid region. Thus, this

model for intermediate permeability regions should be cut off at some small fraction of solid,

when A and B have increased toward their values for Newtonian fluid of 3 and 3
2
, respectively.

This approach takes into accounts for anisotropy of the mushy zone permeability, but does

not include the anisotropy of material strength, which would require consideration of crystal

orientation and reformulation of constitutive equations. In addition, grain boundaries should

be incorporated into the mushy zone permeability because hot tears usually occur at the grain

boundaries in steel casting.

The third approach in the intermediate permeability region including Darcy’s term pre-

sented previously would allow use of the RDG hot tear criterion. However, lack of permeabil-
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ity measurements in iron-carbon systems limits the usage of this model. Instead, a simplified

empirical hot tear criterion developed by Won [21] is adopted in this work. This criterion puts

the inelastic strain rate ε̇in and the brittle temperature range ∆TB into the denominator of

the critical strain equation (Equation 2.1). This implies that higher inelastic strain rate and

larger brittle temperature range make hot tear cracks initiate more easily. This agrees with

the RDG criterion (Equation 2.6) that larger strain rate and wider mushy zone temperature

range leads to larger liquid pressure drop, and increasing cracking tendency. Here the brittle

temperature range between 90% and 99% of solid can roughly be considered proportional to

the mushy zone temperature range which is between 0% and 100% of solid.

The mushy zone adopted by in this work is the constitutive model for the low solid

fraction region, where the mushy zone permeability is infinity (K → ∞). This approach

minimizes the resistance the interdendritic flow and, thus, maximizes the deformability of

the mushy zone. Combined with the strain hot tear criterion, this approach results in a

conservative hot tear prediction.
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3.3 Figures and Tables
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Fig. 3.1: Volume of mass conservation
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Fig. 3.3: Stress and strain within a material volume
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Chapter 4. Model Description

A thermal-mechanical finite element model, CON2D, has been developed at the Univer-

sity of Illinois over the past decade [157]. It is able to simulate temperature, stress, and

shape development during the continuous casting of steel, both in and below the mold. The

stress model features an elastic-viscoplastic creep constitutive equation that accounts for

the different responses of the liquid, semi-solid, δ-ferrite, and austenite phases. Temperature

and composition-dependent functions are also employed for properties such as thermal linear

expansion. A contact algorithm is developed to prevent penetration of the shell into the mold

wall due to the internal liquid pressure. An efficient two-step algorithm has been developed

to integrate these highly non-linear equations. An inelastic strain damage criterion is imple-

mented to predict hot tear crack formation, which includes the contribution of pseudo-strain

due to the flow of the liquid during feeding of the mushy zone. A thermal resistor model

over the interfacial layer between the mold wall and the shell surface makes the heat transfer

and stress models fully coupled. This allows CON2D to simulate the continuous casting

process under realistic conditions. The model is validated with an analytical solution for

both temperature and stress in a solidifying plate. It is then applied to simulate a plant trial

of a billet casting to extend the validation. CON2D predicted mold temperature and shell

thickness are compared to the plant measurements. This chapter describes all the features

of CON2D in detail.

4.1 Heat Transfer Model

CON2D solves the transient energy balance, Equation 4.1, in a transverse Lagrangian

reference frame moving downward with the steel shell at the casting speed shown in Figure

4.1.

ρ
∂H(T )

∂t
= ∇ · (k(T )∇T ) (4.1)
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where H(T ) and k(T ) are isotropic temperature dependent enthalpy and conductivity of

the steel. A 2-D simplification of the full 3-D process is reasonable because the axial heat

conduction (along the casting direction) is trivial at the high P éclet number of the continuous

casting process (vL/α = 2098).

Applying the chain rule to the left hand side of Equation 4.1 combines the specific heat,

cp, and the latent heat, Lf , in a convenient function, ∂H/∂T , in Equation 4.2.

ρ
∂H(T )

∂T

∂T

∂t
=

∂

∂x

(
k(T )

∂T

∂x

)
+

∂

∂y

(
k(T )

∂T

∂y

)
(4.2)

Heat balance numerical errors are lessened by providing an enthalpy-temperature look-up

function.

Boundary conditions can be fixed temperature, heat flux, convection, or a heat resistor

model across the interfacial layer between the mold wall and steel surface [144]. The latter

enables the fully coupled heat transfer and stress analysis described in Section 4.5. The

thermal property functions of steels, including conductivity and enthalpy, are given in Section

4.9.

4.2 Stress Model

4.2.1 Governing Equation

For the static mechanics problem in this Lagrangian frame, the general governing equation

is given by the momentum balance in Equation 4.3.

∇ · σ + ρb = 0 (4.3)

Below the meniscus region, axial temperature and the corresponding displacement gradients

are generally small, so it is reasonable to apply a generalized plane strain assumption along

the casting direction. This enables a 2-D transient stress analysis to provide a reasonable
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approximation of the complete 3-D stress state. Although this is not quite as accurate as a

fully 3-D analysis [54], this moving slice model approach can realistically model the entire

continuous casting process, with a possible exception of the meniscus region, at a relatively

small computational cost.

The incremental governing equations acting over each time step, ∆t, for the generalized

plane strain condition, simplifies Equation 4.3 to the following:

∂∇σx

∂x
+ ∂∇τxy

∂y
= 0

∂∇σy

∂y
+ ∂∇τxy

∂x
= 0

∫
∆σzdA = ∆Fz

∫
x∆σzdA = ∆Mx

∫
y∆σzdA = ∆My

(4.4)

Incremental total strains {∆ε} are related to displacements {ux, uy, uz} according to Equa-

tion 4.5.

∆εx = ∂∆ux

∂x

∆εy = ∂∆uy

∂y

∆εxy = 1
2

(
∂∆uy

∂x
+ ∂∆ux

∂y

)

∆εz = a + bx + cy

(4.5)

There are no body forces because the ferrostatic pressure caused by gravity acting on the

liquid is instead applied through the internal boundary conditions, as described in Section

4.7. Besides the usual boundary conditions such as fixed displacements and surface tractions,

a special type of boundary condition, mold wall constraint, is included in CON2D to model

the interactions between the mold wall and the steel surface as addressed in Section 4.6. The

shape of the mold influences the temperature and stress of the steel greatly as the interaction

between the mold and the shell occurring. This is also discussed in Section 4.6.

Two fold symmetry can be assumed in the current continuous casting applications, so

the constants related to bending, b and c in Equation 4.5 and ∇Mx and ∇M y in Equation
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4.4 all vanish and ∆εz represents the unconstraint axial (thickness) contraction of each 2-D

slice.

4.2.2 Constitutive Equations

Stress-Strain Relationship

Increments of stress and elastic strain are related through Hook’s law, Equation 4.6.

{∆σ} = [D]{∆εe}+ [∆D]{εe}
where,

{σ} = { σx σy σz τxy }T

{ε} = { εx εy εz εxy }T

(4.6)

Matrix [D] contains the isotropic temperature-dependent elastic modulus, E(T ), and Pois-

son’s ratio, ν, given in Equation 4.7.

[D] =
E(T )

(1 + ν)(1− 2ν)




1− ν ν 0 ν

ν 1− ν 0 ν

0 0 1−2ν
2

0

ν ν 0 1− ν




(4.7)

The incremental total strains, {∆ε}, in Equation 4.5 are composed of elastic strain, {∆εe},
thermal strain, {∆εth}, inelastic strain, {∆εin}, and flow strain, {∆εfl}, components as given

in Equation 4.8.

{∆ε} = {∆εe}+ {∆εth}+ {∆εin}+ {∆εfl} (4.8)

Totals of all strains at a given time, t+∆t, are obtained by accumulating the strain increments

at each prior time step. For example, the total strain is accumulated as follows, Equation
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4.9, while the other strains are accumulated similarly.

{εt+∆t} = {εt}+ {∆εt+∆t} (4.9)

Thermal Strain

Thermal strain arises due to volume changes caused by both temperature differences

and phase transformations, including solidification and solid-state phase changes between

crystal structures, such as austenite and ferrite. The incremental isotropic thermal strain

vector, {∆εth}, given in Equation 4.10, is based on the phase fractions and the thermal linear

expansion function, TLE, discussed in Section 4.9.

{∆εth} = (TLE(T t)− TLE(T t−∆t)){ 1 1 0 1 }T (4.10)

Inelastic Strain

Inelastic strain includes both strain-rate independent plasticity and time dependent creep.

Creep is significant at the high temperatures during the continuous casting process and is

indistinguishable from the plastic strain. Thus, this work adopts a unified constitutive model

of the mechanical behavior to capture the temperature- and strain-rate sensitivity of high

temperature steel.

The inelastic strain rate, ε̇in, is described by different constitutive models according to

microstructural state of the solid steel.

˙̄εin =





˙̄εpl−δ , %δ ≥ 10%, T ≤ Tcoherency

˙̄εpl−γ , %δ ≤ 10%, T ≤ Tcoherency

˙̄εflow , T > Tcoherency

(4.11)

where ˙̄εpl−δ and ˙̄εpl−γ are the equivalent inelastic strain rates of ferrite and austenite, respec-

tively, as given in Section 4.9.4. ˙̄εflow and Tcoherency are the equivalent flow strain rate and the
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coherency temperature defined in the next section. The inelastic strain rate function follows

the ferrite function (δ or α) in solid, whenever the phase fraction of ferrite exceeds 10% of

the total volume. This is justified by considering the steel with two phases as a composite

material in which only a small amount of the weaker ferrite phase weakens the mechanical

strength of the whole material.

The plain carbon steels treated in this work are assumed to harden isotropically, so the

von Mises loading surface, associated plasticity and normality hypothesis in the Prandtl-

Reuss flow law is applied [151]:

ε̇in =
3

2
˙̄εin

σ′

σ̄
(4.12)

where ε̇in, σ′, σ̄ and ˙̄εin are the inelastic strain rate tensor, the deviatoric stress tensor,

the equivalent stress scalar and equivalent inelastic strain-rate scalar, respectively. The

equivalent strain-rate, ˙̄εin, is given as:

˙̄εin = c
√

2
3
ε̇in : ε̇in

where

c =





εmax

|εmax| |εmax| ≥ |εmin|
εmin

|εmin| |εmax| < |εmin|
εmax = max(ε11, ε22, ε33)

εmin = min(ε11, ε22, ε33)

(4.13)

The “:” operator means standard term by term tensor multiplication. In this work, the

equivalent inelastic strain rate, ˙̄εin, bears a sign determined by the direction of the maximum

principal inelastic strain as defined in Equation 4.13 in order to achieve kinematic behavior

(Bauschinger effect) during reverse loading.

Equations 4.12 and 4.13 allows an isotropic scalar to represent the full 3-D strain-rate

state. Appendix B defines σ′, σ̄ and Equation 4.12 in 2-D generalized plane strain form.

Parameter c (+1 or −1) makes the equivalent inelastic strain rate have the same sign as
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the maximum principal inelastic strain. The functions for the inelastic strain rate scalars,

˙̄εin, described in Section 4.9, must be integrated to find {∆εin} needed in Equation 4.8, as

described previously in this section.

Strain in Mushy and Liquid Elements

In this model, the liquid elements are generally given no special treatment regarding

material properties and finite element assembly. However, liquid reacts very differently from

solid under external loads. It deforms elastically under hydrostatic force as if it was solid

but deforms dramatically under shear force. If any liquid is present in a given finite element,

a constitutive equation is used to generate an extremely rapid creep rate:

˙̄εflow =





A(|σ̄|) |σ̄| > σyield

0 |σ̄| ≤ σyield

(4.14)

The parameter A is chosen to be 1.5 × 108MPa−1 · sec. to match the viscosity of molten

steel [118]. Equation 4.14 is another format of the linear viscous equation [144] of the

Newtonian fluid which is a reasonable assumption for the liquid steel in the mushy zone.

Liquid deforms under any nonzero shear stress according to Newtonian fluid dynamics. Thus,

σyield should be zero. To avoid numerical difficulty, however, σyield is treated as a tolerance

accuracy parameter without a physical nature and is given a value of 0.01MPa.

This method effectively increases shear strain, and thus enforces negligible liquid strength

and shear stress. The critical temperature where the fraction of liquid is sufficient to make

the elements act as a liquid is the “coherency temperature”, Tcoherency, currently defined

equal to the solidus temperature. To generalize this scalar strain-rate to a multi-dimensional

strain vector, the same Prandtl-Reuss relations, Equations 4.12 and 4.13, are used as for the

solid, ˙̄εin.

This fixed-grid approach avoids the difficulties of adaptive meshing while allowing strain

to accumulate in the mushy region. As in the real continuous casting process, the total
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mass of the liquid domain is not constant. The inelastic strain accumulated in the liquid

represents mass transport due to fluid flow, so is denoted “flow strain”. Positive flow strain

indicates fluid feeding into the region. This is important for the prediction of hot tear

cracks. The disadvantage of using this high creep rate function to model liquid is increasing

the computational difficulty at the solidification front. This requires the use of a very robust

local iteration algorithm [20].

4.3 Finite Element Implementation

4.3.1 Heat Transfer and Solidification Model

The 3-node triangle finite element is employed to approximate temperature distribution

in the domain as a piece-wise linear function. The standard Galerkin method [156] applied

to Equation 4.2 yields the following global matrix equations.

[K] {T}+ [C]
{

Ṫ
}

= {Fq}+
{
Fqsup

}
(4.15)

where [K] is the conductance matrix including the effect of conductivity k(T ), and [C] is the

capacitance matrix including the effect of specific heat, cp, and latent heat, Lf , in enthalpy,

H(T ). Within each element, an effective specific heat, cpe, is evaluated using a spatial

averaging technique suggested by Lemmon [158].

cpe =
∂H

∂T
=

√√√√√√
(

∂H
∂x

)2
+

(
∂H
∂y

)2

(
∂T
∂x

)2
+

(
∂T
∂y

)2 (4.16)

Enthalpy gradients are interpolated within each element using the standard natural co-

ordinates as shape functions. Average conductivity within each element is obtained by

simply averaging the three nodal values. A three-level time-stepping method proposed by

Dupont [159] is adopted to solve Equation 4.15. Temperatures at the current time t + ∆t
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are found from the temperatures at the previous two time steps, t and t−∆t.

{T} =
1

4

{
3T t+∆t + T t−∆t

}
(4.17)

{
Ṫ

}
=

{
T t+∆t − T t

∆t

}
(4.18)

Substituting Equations 4.17 and 4.18 into Equation 4.15 and rearranging give a recursive

global matrix equation expressing the time and spatial discretization of the heat conduction

equation, Equation 4.2.

[
3

4
[K] +

[C]

∆t

] {
T t+∆t

}
= {Fq}+

{
Fqsup

}− 1

4
[K]

{
T t−∆t

}
+

[C]

∆t

{
T t

}
(4.19)

Equation 4.19 is solved at each time step for the unknown nodal temperatures, T t+∆t, using

a Choleski decomposition solver [160]. Fq and Fqsup are the heat flow load vectors containing

the distributed heat flux at the domain boundary and the super heat flux vector at the

internal moving boundary, respectively. On each boundary (between node i and j) where

heat flux is applied, the contributions from each element on the boundary are summed as

follows:

{Fq} =
∑

allboundaryelements

∫
[N ]T qdL =

∑

allboundaryelements





qijLij

2

qijLij

2





(4.20)

where Lij is the distance between node i and j. The heat flux function, q , will be determined

according to specific applications. The super heat flux is applied using the similar method,

where the boundary element set and heat flux function are determined differently which are

discussed in Section 4.7.1.

63



4.3.2 Stress Model

Applying the standard Galerkin method to Equations 4.4 ∼ 4.7 gives the set of linear

equations over the finite element domain below,

[K]{∆u}t+∆t = {∆Fin}t+∆t + {∆Fth}t+∆t + {∆Ffp}t+∆t − {∆Fel}t+∆t (4.21)

where [K] , {∆Fin} , {∆Fth} , {∆Ffp}, and {Fel} are the stiffness matrix and incremental

force vectors due to incremental thermal strain, inelastic strain, ferrostatic pressure and

external surface traction at particular boundaries, and elastic strain corrections from the

previous time step, respectively. Refer to Equations B.10 ∼ B.14 in Appendix B for more

details. At each time step, Equation 4.21 is solved for the incremental displacements, {∆u},
using the Choleski method [160] and the total displacements are updated as

{u}t+∆t = {u}t + {∆u} (4.22)

Then, the total strains and stresses are updated from Equations 4.5 and 4.6, respectively.

The 6-node quadratic-displacement triangle elements use the same grid of nodes that are

connected into 3-node elements for the heat flow calculation. Further details are given in

Appendix B.

4.4 Numerical Integration Scheme

Highly strain-rate-dependent inelastic models require a robust numerical integration tech-

nique to avoid numerical difficulties. The non-linear equations to be integrated are given in

Equations 4.23 and 4.24 by combining Equations 4.6 and 4.8, neglecting the second term of
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the right hand side of Equation 4.8.

σt+∆t = Ct+∆t :
(
εt − εt

th − εt
in + ∆εt+∆t −∆εt+∆t

th −∆εt+∆t
in

)
(4.23)

ε̄t+∆t
in = ε̄t

in + ∆ε̄t+∆t
in (4.24)

The incremental equivalent inelastic strain accumulated over a time step is given in

Equation 4.25 based on a highly nonlinear constitutive function, which depends on σ̄ and

ε̄in , which change greatly over the time step.

∆ε̄t+∆t
in = F (T, σ̄t+∆t, ε̄t+∆t

in , %C)∆t (4.25)

F is one of the constitutive functions given in Equations 4.14, 4.58, or 4.60 depending on the

current material state. Substituting Equations 4.12 and 4.25 into Equations 4.23 and 4.24

and using fully implicit time stepping method, a new set of evolution equations are obtained

as:

σt+∆t = Ct+∆t :

(
εt − εt

th − εt
in + ∆εt+∆t −∆εt+∆t

th − 3

2
F

σt+∆t′

σ̄t+∆t
∆t

)
(4.26)

ε̄t+∆t
in = ε̄t

in + F (T, σ̄t+∆t, ε̄t+∆t
in , %C)∆t (4.27)

Two tensors, σt+∆t and ∆εt+∆t, and one scalar, ε̄t+∆t
in , comprise 13 unknown scalar fields for

3-D problems or 9 unknowns for the 2-D problem here, which need solving through Equations

4.26 and 4.27. Zhu implemented an alternating implicit-explicit mixed time integration

scheme, which is based on an operator-splitting technique that alternates between local and

global forms of the total strain increment and inelastic strain rate over each pair of successive

steps [20]. Within each time step, σt+∆t and ε̄t+∆t
in are first solved using a fully implicit time

integration technique based on the current best estimation of the total strain increment ∆ε̂,

which is taken from the previous time step ∆εt. This is a “local step” because it is spatially
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uncoupled. Then, improved estimates of σt+∆t and ε̄t+∆t
in from the “local step” are used to

solve for ∆εt+∆t by explicit finite element spatial integration through Equations 4.21 and 4.5.

This is a “global step” [20]. There is still a tensor unknown in Equation 4.26, which makes

even the local time integration step computationally expensive. Lush et. al. transformed the

tensor equation of Equation 4.26 into a scalar equation for isotropic materials with isotropic

hardening [161].

σ̄t+∆t = σ̄∗t+∆t − 3µt+∆tF (T, σ̄t+∆t, ε̄t+∆t
in , %C)∆t (4.28)

where σ̄∗t+∆t is the equivalent stress of the stress tensor, σ̄∗t+∆t, defined below.

σ∗t+∆t = Ct+∆t : (εt − εt
th − εt

in + ∆ε̂− ε̇t+∆t
th ∆t) (4.29)

Equations 4.27 and 4.28 form a pair of nonlinear scalar equations to solve two unknowns ε̄t+∆t
in

and σ̄t+∆t by using operator-splitting method within a pair of successive local and global

steps. In the local step, a bounded Newton-Raphson iteration scheme [161] is adopted.

The integration procedure used within each time step is summarized as:

1. Estimate {∆ε̂} based on {∆u} from the previous time step: {∆ε̂} = [B]{∆u}t.

2. Calculate {σ∗}t+∆t, σ̂∗ and {σ∗′}t+∆t, needed to define the direction of the stress vector.

{σ∗}t+∆t = [D]t+∆t

(
{ε}t − {εth}t − {εin}t+∆t + {∆ε̂} − ε̇t+∆t

th ∆t{ 1 1 0 1 }T

)

(4.30)

3. Solve the following two ordinary differential equations simultaneously for ε̄t+∆t
in and

¯̂σt+∆t at each local Gauss point, using a fully implicit bounded Newton-Raphson inte-

gration method from Lush [161]. This method gives the best robustness and efficiency

of several alternative approaches evaluated [20]. Function F is either Kozlowski model
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III for γ, the power law for δ, or flow strain for liquid phase.

ε̄t+∆t
in = ε̄t

in + F (T, ¯̂σt+∆t, ε̄t+∆t
in , %C)∆t

¯̂σt+∆t = σ̄∗t+∆t − 3µt+∆tF (T, ¯̂σt+∆t, ε̄t+∆t
in , %C)∆t

(4.31)

4. Expand this scalar stress estimate into vector form:

{σ̂}t+∆t = ¯̂σt+∆t {σ∗′}t+∆t

σ̄∗t+∆t + 1
3
σ∗t+∆t

m {δ}T

{σ∗′}t+∆t = {σ∗}t+∆t − 1
3
σ∗t+∆t

m {δ}T

σ∗t+∆t
m = σ∗t+∆t

x + σ∗t+∆t
y + σ∗t+∆t

z

{δ} = { 1 1 0 1 }

(4.32)

5. Calculate ˙̄εt+∆t
in from ¯̂σt+∆t and ε̄t+∆t

in using F according to the material phase.

6. Expand this scalar inelastic strain estimate into a vector {ε̇in}t+∆t with the same direc-

tion as {σ̂′}t+∆t using Prandtl-Reuss relations; Update {εin}t+∆t = {εin}t+{ε̇in}t+∆t∆t

only for solidified elements.

7. Use classic FEM spatial integration (Appendix B) to solve Equation 4.21 for {∆u}t+∆t

based on {ε̇in}t+∆t.

8. Finally, find {∆ε}t+∆t from {∆u}t+∆t and update {ε}t+∆t and {σ}t+∆t.

Overall, this alternating implicit-explicit scheme with the bounded Newton-Raphson it-

eration gives the best robustness and efficiency of several alternative FEM time integration

approaches evaluated [20].

4.5 Treatment of the Mold - Shell Interface

Heat transfer does not depend directly on the force equilibrium equation because the

mechanical dissipation energy is negligible. The heat flow and stress models are fully coupled

67



with each other, however, when the gap between mold and steel shell is taken into account.

Shrinkage of the shell tends to increase the thermal resistance across the gap where the shell

is strong enough to pull away from the mold wall. This leads to hot and weak spots on

the shell. This interdependence of the gap size and the thermal resistance requires iteration

between the heat transfer and stress models. As the gap size is unknown in prior, the heat

resistance is also unknown. Thus, iterations within a time step are usually needed. Contact

between the mold wall and shell surface is discussed in Section 4.6.2.

4.5.1 Interface Heat Transfer

When the coupled heat transfer and thermal stress analysis is performed, the heat transfer

boundary condition at the steel surface is described by a gap heat resistor model shown in

Figure 4.3. Heat leaves the steel shell via conduction and radiation across the interfacial gap.

It is then conducted across the thin copper mold, and extracted by cooling water flowing

across the back of the mold tube. The temperature and the heat convection coefficient

of the cooling water are input from the results of a preliminary computation using the

CON1D model, described elsewhere [2]. The contact resistance adopted in this model is

several orders of magnitude larger than the physical contact resistance [118] between flat

steel and copper surface because it includes the influence of oscillation marks [2]. The gap

thickness is calculated during each iteration from the shell surface displacement and the

mold wall position, according to the local values of the mold taper and distortion, which are

described in the next section. Once the gap size is determined, the heat flux, qgap, across

the interfacial layer between the mold wall and steel surface is solved together with the mold
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hot face temperature, Tmold:

qgap = −Tshell−Twater

rgapmold

where

rgapmold = 1
hwater

+ Tmold

kmold
+

tgap
kgap

+rcontact

1+hrad(
tgap
kgap

+rcontact)

hrad = 5.67d−8
1

εm
+ 1

εs
−1

(Tshell + Tmold)(T
2
shell + T 2

mold)

ē = 1
1

εm
+ 1

εs
+1

Tmold =
5.67×10−8ēT 4

shell+
Tshell
rmold

+
Twater

rgap
1

rmold
+ 1

rgap

rmold = dmoldhwater+kmold

hwaterkmold

rgap = dgap

kgap
+ rcontact

(4.33)

4.5.2 Gap Size Calculation

The gap size, dgap, is calculated online for each boundary node at the shell surface, based

on gaps from the previous iteration, n:

d̂n+1
gap = max({u(dn

gap)} · n̂− dt+∆t
wall , dgapmin)

where

dt+∆t
wall = dt+∆t

taper − dt+∆t
molddist

(4.34)

where {u}, n̂, dwall, dtaper, dmolddist and dgapmin are the displacement vector at boundary

nodes, unit normal vector to the mold wall surface, mold wall position, mold wall position

change due to mold distortion, and the minimum gap thickness, respectively. A positive

dgap, indicates a real space between the mold and shell.

The minimum gap value is set as:

dgapmin = rcontactkgap (4.35)

69



It physically means the effective oscillation mark depth at the shell surface. When the gap

size calculated is less than the minimum gap size, the contact resistance, rcontact, dominates

the heat resistance between the shell surface and the mold wall. Gap size variation within

the minimum gap size is assumed not to affect the thermal resistance, which accelerates

convergence.

4.5.3 Thermal - Stress Coupling

The overall flow of CON2D is shown in Figure 4.4. Within each time step, the compu-

tation alternates between the heat transfer and stress models through the following fully-

coupled procedure:

1. The temperature field is solved based on the current best estimate of gap size, from

the previous time step with Equation 4.34. The initial gap size at the beginning of

the simulation is simply zero around the strand perimeter as the liquid steel at the

meniscus flows to match the mold contour.

2. The incremental thermal strain is evaluated from the temperature field at the current

and previous time steps, Equation 4.10. The inelastic strain is estimated by integrating

Equation 4.31 following the procedure described in Section 4.4. The global matrix

equation, Equation 4.21, is solved for displacements, strains, and stresses using the

standard finite element method.

3. The gap sizes for the next iteration are updated by:

dn+1
gap = βd̂n+1

gap + (1− β)dn
gap (4.36)

where β is chosen to be 0.5.
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4. Finally, steps 1 ∼ 3 are repeated until the gap size difference between two successive

heat transfer and stress iterations, n and n + 1, is small enough:

ddiff =

√∑
nb(d

n+1
gap − dn

gap)
2

∑
nb(d

n
gap)

2
(4.37)

where nb is the number of all boundary nodes. When ddiff becomes smaller than the

specified “gap tolerance”, dmin, the gap size is considered converged.

4.6 Modeling the Mold Wall

The mold wall affects the calculation in two ways:

1. Altering the size of the interfacial gap and associated heat transfer between the mold

and strand through its distorted shape.

2. Constraining the shell from bulging due to the internal ferrostatic pressure.

4.6.1 Mold Wall Shape

The mold wall is defined in CON2D as a function of distance below the meniscus. The

shape of the mold varies from its dimensions at the meniscus due to mold taper and mold

distortion. The mold is tapered to follow the shrinkage of the steel strand to prevent excessive

gaps from forming between the mold wall and shell surface, as well as preventing bulging of

the shell. Linear taper is defined by providing the percentage per meter as follows:

dtaper =
(%Taper/m)

100

W

2
vct (4.38)

where W , vc and t are the mold width, casting speed and current time below meniscus,

respectively. As the modelled section of the steel strand moves down from the meniscus, the

mold wall distorts away from the solidifying shell, and tapers towards it.
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Mold distortion arises from two main sources, thermal expansion of the mold wall due to

heating during operation, and mold wear due to friction between the mold and the strand.

For the billet casting simulation presented here, mold distortion is considered to be simple

thermal expansion as follows, ignoring residual distortion and mold wear.

dmolddist = αmold
W

2
(T̄ − T̄0) (4.39)

where T̄ is the average temperature through the mold wall thickness as a function of the

distance below mold exit. T̄0 is the average mold wall temperature where the solid shell

begins, αmold is the thermal expansion coefficient of the copper mold tube, and W is section

width.

Arbitrary complex mold shapes can be modelled by providing an external data file or

function with mold wall positions at different distances below the meniscus, and even around

the perimeter. For example, complex 3-D mold distortion profiles [38] are used for slab

casting simulations with CON2D [19,80].

4.6.2 Contact Algorithm for Shell Surface Constraint

The mold wall provides support to the solidifying shell before it reaches the mold exit.

A proper mold wall constraint is needed to prevent the solidifying shell from penetrating

the mold wall, while also allowing the shell to shrink freely. Because the exact contact area

between the mold wall and the solidifying shell is not known aprior, an iterative solution

procedure is needed.

Some early finite element models solved contact problems by the Lagrange multiplier

approach, which introduces new unknowns to the system as well as numerical difficulties

[162]. This work adopts a penalty method developed by Moitra [19, 80] which is tailored to

this particular casting problem domain. It solves the contact problem only approximately,

but is easy to implement and is more stable. Iteration within a time step proceeds as follows.
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At first, the shell is allowed to deform freely without mold constraint. Then, the in-

termediate shell surface is compared to the current mold wall position. A fraction of all

penetrated nodes, identified by Equation 4.40, are restrained back to the mold wall position

by a standard penalty method, and the stress simulation is repeated.

{u} · n̂− dwall < −dpen (4.40)

where dpen is the specified penetration tolerance. Iteration continues until no penetration

occurs.

The nodes to be constrained are chosen by checking three scenarios shown in Figure 4.5:

1. In Figure 4.5a, a portion of the shell surface with length L penetrates the mold, and

the maximum penetration is found at the centerline of the strand face. Those shell

boundary nodes in the half of this violated length nearest to the face center, Lc, are

constrained in the next iteration.

2. In Figure 4.5b, the center of the shell surface penetrates the mold but does not pene-

trate the most. Those violated nodes from the maximum penetration position to the

face center are constrained in the next iteration.

3. In Figure 4.5c, the center of the shell surface does not penetrate the mold. That half

of the violated nodes closest to the face center are constrained in the next iteration.

Commercial software, such as ABAQUS, generally constrains violated nodes one by one

until convergence is reached. The present method is believed to be more computationally

efficient for the particular quarter mold and behavior of interest in this work. The friction

between the shell and mold surface is ignored in this model. This would need to be added

to consider phenomena such as transverse cracks due to excessive taper.
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4.7 Solidification Front Treatment

4.7.1 Superheat Flux

Superheat is the amount of heat stored in the liquid steel that needs to be extracted

before it reaches the liquidus temperature. Superheat is treated in one of two ways:

1. Heat conduction method.

2. Superheat flux method.

The heat conduction method simply sets the initial steel temperature to the pouring temper-

ature, and increases the conductivity of the liquid by 6.5 times to crudely approximate the

effects of fluid flow [163]. This method evenly distributes the superheat over the solidification

front. In reality, the superheat distribution is uneven due to the flow pattern in the liquid

pool.

The second method first obtains the superheat flux distribution from a separate fluid flow

computation, such as done previously for billets [164] or slabs [165]. This superheat flux at

a given location on the strand perimeter is applied to appropriate nodes on the solidification

front. Specifically, it is applied to the two nodes just below the liquidus in those 3-node

elements with exactly one node above the liquidus. This is shown in Figure 4.6, where the

isotherm is the liquidus. The initial liquid temperature is set just above the liquidus, to

avoid accounting for the superheat twice.

4.7.2 Ferrostatic Pressure

Ferrostatic pressure greatly affects gap formation by encouraging contact between the

shell and mold, depending on the shell strength. The ferrostatic pressure is calculated by:

Fp = ρgz (4.41)
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where z is distance of the current slice from the meniscus found from the casting speed and

the current time. Ferrostatic pressure is treated as an internal load that pushes the shell

toward the mold wall, as shown in Figure 4.6. It is applied equally to those two nodes just

below the coherency temperature that belong to those 3-node elements having exactly one of

its 3 nodes above the Tcoherency isotherm. It is assembled to the global force vector through

Equation B.11 in Appendix B, which gives:

{Ffp} =
∑

movingboundaryelements





FpLij

2

FpLij

2





(4.42)

where Lij is the boundary length between node i and j within a 3-node element.

4.8 Implementation of the Hot Tear Criterion under Complex

Strain State

To predict hot tear cracks based on stress and strain histories, the model accumulates

“damage strain” at every node in the grid by summing the flow strain and elastic strain

components during the time steps when the nodal temperature is in the brittle temperature

range, ∆TB. This is reasonable to compare to the critical strain (Equation 2.1) from mea-

sured total strain because the flow strain and elastic strain dominate the total strain in the

mushy zone. The “damage strain” provides a relative measure of crack potential.

Furthermore, comparing the appropriate damage strain component with the critical strain

given in Equation 2.1 allows the model to predict crack formation and even crack orientation.

Equation 2.1 provides a scalar critical strain as the crack threshold value to be compared

with. However, the strain state is described by a multi-dimensional tensor. The proper

component to compare to the critical strain must be chosen.

As discussed in Section 2.2, hot tear cracks initiate due to insufficient liquid feeding

into the interdendritic space under thermal and mechanical deformation [3, 81–86]. For
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columnar dendrite structures which are always encountered in the continuous casting of

steel, the direction perpendicular to the primary dendrite arms is the weakest direction of

the columnar dendrite structure. Therefore, the damage strain component perpendicular to

the primary dendrite arms is chosen as the state variable to compare to the critical strain in

this work. For the same reason, the strain rate used in Equation 2.1 to calculate the critical

strain should also be taken as the value of the strain rate component perpendicular to the

primary dendrite arms.

4.8.1 Hot Tear Criterion in CON2D

In the transverse section domain modelled by CON2D, the strain and strain rate com-

ponent chosen is straightforward as there is only one strain or strain rate component per-

pendicular to the primary dendrite arms in 2-D space. It is often reasonable to assume

that dendrites grow along the temperature gradient direction along which the temperature

decreases the fastest. Then, the hot tear criterion is implemented as follows:

1. Calculate the current temperature gradient ∇T based on heat transfer model results

as

∇T = [B]





T1

T2

T3





(4.43)

where T1, T2, T3 are the nodal temperature of the 3-node heat transfer elements and [B]

is their global B matrix given in Equation A.2. The direction of decreasing temperature

gradient is considered to be the growth direction of primary dendrite arms, d1.

d1 = −∇T = {d1x, d1y}T (4.44)
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2. Find out the unit vector, d2, which is perpendicular to the primary dendrite arms by

solving the following equations for d2.

d1 · d2 = 0 (4.45)

‖ d2 ‖=
(
d2

2x + d2
2y

) 1
2 = 1 (4.46)

3. At the end of each time step, calculate the incremental strain and strain rate component

perpendicular to the temperature gradient direction for those element Gauss points

within the brittle temperature range, whose fraction of solid is between 90% and 99%.

∆εhtc = (d2)
T ·∆tε̇in · d2 , 0.9 ≤ fs ≤ 0.99 (4.47)

ε̇htc = (d2)
T · ε̇in · d2 , 0.9 ≤ fs ≤ 0.99 (4.48)

4. Calculate hot tear damage strain εhot−tear by accumulating all of the incremental strain

between 90% and 99% solid.

εhot−tear =

fs=0.99∑

fs=0.9

∆εhtc (4.49)

5. Calculate the critical strain εc by Equation 2.1. Note that the strain rate used in

Equation 2.1 is the average strain rate within the brittle temperature range.

6. Hot tear cracks are assumed to initiate when εhot−tear ≥ εc.

4.8.2 Hot Tear Criterion in a 3-D Model

This hot tear criterion is extended to 3-D thermal stress models. The procedure is the

same as described in the last section for the 2-D model. However, there are infinite number

of directions could satisfy the condition of being perpendicular to a given direction in a 3-D

space. Thus, a sweeping procedure is needed to go over large enough number of directions
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around the given temperature gradient direction to choose the direction which has the largest

tensile strain magnitude. This direction is the most cracking suspect direction. Then, the

incremental strain component to be accumulated into the damage strain and the strain rate

component used in Equation 4.49 is along this direction.

The general algorithm is described as below in summary:

1. Calculate the temperature gradient as

∇T =




∂T
∂x

∂T
∂y

∂T
∂z




= J−1BT =




∂x
∂g

∂y
∂g

∂z
∂g

∂x
∂h

∂y
∂h

∂z
∂h

∂x
∂r

∂y
∂r

∂z
∂r




−1 


∂N1

∂g
∂N2

∂g
· · · ∂N#node

∂g

∂N1

∂h
∂N2

∂h
· · · ∂N#node

∂h

∂N1

∂r
∂N2

∂r
· · · ∂N#node

∂r







T1

...

T#node




(4.50)

where ]node = 8 for a 3-D linear brick element. The direction of decreasing temperature

gradient is considered to be the growth direction of primary dendrite arms, d3.

d3 = −∇T = {d3x, d3y, d3z}T (4.51)

2. Chose the directions perpendicular to the temperature gradient direction. The normal-

ized sampling directions, dsi, are chosen to equally distribute around the temperature

gradient direction with 5o interval. Only half of directions in the circle around the

temperature gradient direction (180o) are considered due to the equal strain magni-

tude between the two opposite directions. The detail of the sweeping algorithm is in

Appendix C.

3. Project the incremental inelastic strain and strain rate to each sweeping direction dsi

within the brittle temperature range, whose fraction of solid is between 90% and 99%.

εhtci = (dsi)
T ·∆εin · dsi , 0.9 ≤ fs ≤ 0.99 (4.52)

ε̇htci = (dsi)
T · ε̇ · dsi , 0.9 ≤ fs ≤ 0.99 (4.53)
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4. Choose hot tear damage strain to be the largest tensile strain magnitude from all

sample directions.

εhot−tear = max(εhtc1, . . . , εhtcn) (4.54)

where n(= 36) is the total number of the sweeping directions.

5. Hot tear crack initiate when εhot−tear ≥ εc, where the critical strain εc is calculated by

Equation 2.1.

A joint activity was initiated between the Metal Processing Lab at the University of

Illinois and Champaign Simulation Center of Caterpillar (CSC) Corporation. A couple of

commercial packages are involved during the simulation of casting process at CSC. Temper-

ature field is calculated by heat transfer and solidification packages such as MAGMA. Then,

the temperature distribution is imported into ABAQUS to perform thermal-stress analysis to

obtain residue stresses and strains. The 3-D version of the hot tear criterion is implemented

as an add-on program under ABAQUS frame to further post-process ABAQUS result file

(odb file) in order to predict hot tear cracks.

4.9 Mechanical Properties

This work adopts temperature-dependent steel properties chosen to be as realistic as

possible.

4.9.1 Phase Fraction Model

A non-equilibrium pseudo-binary Fe-C phase diagram abstracted from a micro-segregation

model for plain carbon steels [166] is incorporated in CON2D to approximate the realistic

phase fraction evolution between the solidus and liquidus temperatures. Figure 4.7 shows

the non-equilibrium pseudo-binary Fe-C phase diagram in which points A through H are

taken from the simple micro-segregation model [166]. This phase diagram is constructed for
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the carbon steel with 1.52%Mn, 0.34%Si, 0.012%P , and 0.02%S at the cooling rate of 10

K · sec.−1 and the arm spacings given in [167].

The extra chemical components and the fast cooling rate make the peritectic reaction

conduct over a temperature range rather than a single temperature. Thus, point F is located

below the peritectic temperature indicated by points D and E. This phase diagram is an

isopleth [168] of a more complex multi-component phase diagram which typically has up to

14 dimensions representing the 13 chemical elements and temperature along each dimension.

For example if only one extra chemical element, Si, was added into the Fe-C system, a

ternary phase diagram with Fe, C, and Si at its three vertices would be needed to determine

the phase fractions at any given temperature in the triangle DEF. To do this properly

requires consideration of the point, P, within the Fe-C-Si triangle that represents an alloy

with specific Fe, C, and Si content. The amount of each component is determined by the

distance between P and vertices corresponding to that component. When the point P lies

within a two phase or a three phase region, the phase fractions can be determined by the lever

rule across the multi-dimensional tie line between the internal boundaries of the multi-phase

region. Unfortunately, the already complex ternary phase diagram is still much too simple

to evaluate the real alloys. Even advanced numerical models, such as ThermoCalc [169],

have difficulty to accurately calculate the phase fractions from a multi-dimensional phase

diagram.

To simplify the issue, it is assumed in this work that the peritectic austenite(γ) phase

evolutes linearly from the starting temperature of the peritectic reaction (determined by the

line between points D and E) to the ending temperature of the pertectic reaction (determined

by the lines DF and FE). On the lines DF and FE, there are the mixture phases of δ + γ

and liquid+γ, respectively. Their fractions can be determined by the lever rule within the

three phase triangle, DFE. In addition to the assumption of linear evolution of γ from the

beginning to the end of the peritectic reaction, All the fractions of δ, γ, and liquid can be

determined.
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Figure 4.7 also compares the 100% and 75% solid lines produced by this pseudo-binary

phase diagram with the ZST and ZDT measurements by Schmidtmann et. al. [167]. Fig-

ure 4.8 shows the evolution of the fractions of solid, δ-ferrite, and austenite for the four

carbon steels (0.003%C, 0.044%C, 0.1%C, 0.27%C, and 0.44%C) from their liquidus to

their solidus. It can be seen that the phase fractions during solidification produced by the

pseudo-binary phase diagram are fairly close to those produced by the more comprehensive

micro-segregation model [166], especially for the liquid fraction which is of most important

to this work.

4.9.2 Thermal Properties

The temperature dependent conductivity function for plain carbon steel is fitted from

measured data compiled by K. Harste [170] and is given in Equation 4.55. Figure 4.9 shows

the conductivity for several typical plain carbon steels. The conductivity increases linearly

through the mushy zone to the liquid by a factor of 6.5 to partly account for the effect of

convection due to flow in the liquid steel pool [163] if the heat conduction method is chosen.

If the superheat flux method as described in Section 4.7.1 is chosen, the conductivity in the

liquid and mushy zone will not be increased.

K(W/mK) = Kαfα + Kδfδ + Kγfγ + Klfl

where

Kα = [80.91− 9.9269× 10−2T (oC) + 4.613× 10−5T (oC)2][1− a1(%C)a2 ]

Kδ = [20.14− 9.313× 10−3T (oC)][1− a1(%C)a2 ]

Kγ = 21.6− 8.35× 10−3T (oC)

Kl = 39.0

a1 = 0.425− 4.385× 10−4T (oC)

a2 = 0.209 + 1.09× 10−3T (oC)

(4.55)
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The enthalpy curve used to relate heat content and temperature in this work, H(T ), is

obtained by integrating the specific heat curve cp(T ) fitted from measured data compiled by

K. Harste [170] as given in Equation 4.55. Figure 4.10, shows the enthalpy for the typical

plain carbon steels.

H(KJ/Kg) = Hαfα + Hδfδ + Hγfγ + Hlfl

where

Hphase = [b−1T (K)−1 + b0 + b1T (K)1 + b2T (K)2 + b3T (K)3]aphase(%C)

(4.56)

The parameter values and the carbon content dependent functions, a, for all phases are listed

in Tables 4.2 and 4.3.

For the multi-phase region, both conductivity and enthalpy are calculated by weighted

averaging of their different phase values using their volume fraction, f . The subscripts (α,

δ , γ, and l) in Equations 4.55 and 4.56 are represent for δ-ferrite, α-ferrite, austenite and

liquid, respectively. The subscript, phase, in Equation 4.56 represents one of the four phase,

α, δ , γ, or l.

4.9.3 Thermal Linear Expansion

The thermal linear expansion function is obtained from solid phase density measurements

compiled by K. Harste [170] and Jablonka [171] and liquid density measurements by Jimbo
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and Cramb [172].

TLE = 3

√
ρ(T0)
ρ(T )

− 1

where

ρ(Kg/m3) = ραfα + ρδfδ + ργfγ + ρlfl

ρα = 7881− 0.324T (oC)− 3× 10−5T (oC)2

ρδ = 100[8011−0.47T (oC)]
[100−(%C)][1+0.013(%C)]3

ργ = 100[8106−0.51T (oC)]
[100−(%C)][1+0.008(%C)]3

ρl = 7100− 73(%C)− [0.8− 0.09(%C)][T (%C)− 1550]

(4.57)

A simple mixture rule is applied to obtain the density value from the values of different

phases. The subscripts in Equation 4.57 have the same meaning as in Equations 4.55 and

4.56. Figure 4.11 shows the thermal linear expansion curves for the typical plain carbon

steels.

4.9.4 Inelastic Constitutive Properties

The unified constitutive model developed here uses the instantaneous equivalent inelastic

strain rate, ˙̄εin, as the scalar state function, which depends on the current equivalent stress,

σ̄, temperature, T , the current equivalent inelastic strain, ε̄in, which accumulates below the

coherent temperature, and the carbon content of the steel [58,59,66]. The model is developed

to match tensile test measurements of Wray [58] and creep test data of Suzuki [62]. Model

III by Kozlowski given in Equation 4.58 is adopted to simulate the mechanical behavior of
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austenite.

˙̄εpl−γ(sec
−1) = Cexp

(−Q
T

) |F |n−1F

where

F = σ̄ − aε|ε̄in|nε−1ε̄in

Q = 4.465× 104

C = 4.655× 104 + 7.14× 104(%C) + 1.2× 105(%C)2

aε = 130.5− 5.128× 10−3T

nε = −0.6289− 1.114× 10−3T

n = 8.132− 1.54× 10−3T

(4.58)

The equivalent stress σ̄ is calculated as

σ̄ = c
(

3
2
σ′ : σ′) 1

2

where

c =





σmax

|σmax| |σmax| ≥ |σmin|
σmin

|σmin| |σmax| < |σmin|
σmax = max(σ11, σ22, σ33)

σmin = min(σ11, σ22, σ33)

(4.59)

where σ11, σ22, and σ33 are the principal stresses.

A power law model is developed to model the behavior of δ-ferrite [20], given as follows:

˙̄εpl−δ(sec
−1) = C |σ̄|n−1 σ̄(1 + 1000 |ε̄in|)mn

where

C = 0.1
(

(T/300)5.52

1.3678×104(%C)−5.56×10−2

)n

m = 9.4156× 10−5T − 0.349501

n = (1.617× 10−4T − 0.06166)−1

(4.60)

Figure 4.12 compares the stresses measured by Wray [58] to those predicted by the

constitutive models at 5% strain under different strain rates. The constitutive models give
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acceptable performance. This figure also shows that δ-ferrite, which forms at higher tem-

peratures found near the solidification front, is much weaker than austenite. This greatly

affects the mechanical behavior of the solidifying steel shell.

A simple mixture rule is not appropriate in two-phase regions that contain interconnecting

regions of a much weaker phase. Thus, the constitutive model given in Equation 4.60 is

applied in the solid whenever the volume fraction of ferrite (δ-ferrite above 1400oC, δ-ferrite

below 900oC) is more than 10%. Otherwise, Equation 4.58 is adopted.

To make the constitutive model properly handle kinematic hardening during reverse

loading, the equivalent stress/strain used in Equations 4.58 and 4.60 are given the same sign

as the principal stress/strain having the maximum magnitude. The inelastic strain rate, as

a consequence, also bears a sign.

Two uniaxial tensile experiments [21,59] and a creep experiment [62] on plain carbon steel

at elevated temperatures are simulated by CON2D to test the performance of its constitutive

models. Figures 4.13 and 4.14 show CON2D predictions of tensile test behavior of austenite

and δ-ferrite at constant strain rate around 10−4s−1 which is typically encountered in the

shell during continuous casting [59]. The results also compare reasonably with experiments

at small strain (< 5%), although they over-predict the stress when the strain exceeds 5%.

Because the strain generally stays within 5% for the entire continuous casting process, the

constitutive models are quite reasonable for this purpose. Figure 4.15 shows the CON2D

predictions of creep test behavior at constant load. The inelastic strain predictions match the

measurements reasonably well, especially at times shorter than 50 seconds, of most concern

to continuous casting in the mold region. Beyond this time, CON2D under-predicts creep,

which is consistent with the over-prediction of stress, observed in the tensile test cases.

Monotonic loading is unlikely beyond this length of time, anyway. Figure 4.16 compares

CON2D predictions and creep test measurements [62] under a sinusoidal alternating load

with full reversal (R-ratio = 1.167). Although more measurements and computations of
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complex loading conditions would be helpful, these comparisons show that the constitutive

models in CON2D are reasonable, even for conditions that include reverse loading.

4.9.5 Elastic Properties

The temperature-dependent elastic modulus curve used in this model is a stepwise linear

fit of measurements by Mizukami et. al. [173] given in Figure 4.17. Unlike in some other

models, the elastic modulus of the liquid here is given the physically realistic value of 10GPa.

Poisson ratio is 0.3 constant. Measurements of higher Poisson ratios at high temperature

are attributed to creep occurring during the experiment. Incorrectly incorporating part of

the volume conserved plastic behavior, where ν = 0.5, into the elastic ν will cause numerical

difficulty for the solver.

4.10 Model Validation

An analytical solution of thermal stress model in an unconstrained solidifying plate,

derived by Weiner and Boley [4] is used here as an ideal validation problem for solidifica-

tion stress models. Constants for this validation problem chosen here to approximate the

conditions of interest in this work are listed in Table 4.4.

The material in this problem has elastic-perfect plastic behavior. The yield stress drops

linearly with temperature from 20MPa at 1000oC to 0MPa at the solidus temperature

1494.35oC. For the current elastic-viscoplastic model, this constitutive relation is trans-

formed into a computationally more challenging form, the highly nonlinear creep function of

Equation 4.14 with A = 1.5× 108 and σyield = 0.01MPa in the liquid. A very narrow mushy

region, 0.1oC, is used to approximate the single melting temperature assumed by Boley

and Weiner. In addition to the generalized plane strain condition in the axial z-direction,

a similar condition is imposed in the y-direction (parallel to the surface) by coupling the

displacements of all nodes along the top surface of the slice domain as shown in Figure 4.24.

The analytical solutions are computed with MATLAB [174].
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Figures 4.18 and 4.19 show the temperature and the stress distributions across the solid-

ifying shell at different solidification times using an optimized mesh and time step, similar

to that adopted for the 2-D billet casting simulation. The mesh is gradually increased in

size from 0.3mm at the left end to 2.0mm at right end, and time step size is increased from

0.001sec. at the beginning to 0.1sec. at the end.

Figures 4.20 ∼ 4.23 show the relative average errors, given in Equation 4.61 for the

temperature and stress predictions, respectively.

ErrorT (%) =

N∑
1

√
(T CON2D

i −T Analytical
i )

2

N |Tmelt−Tcold| × 100

Errorσ(%) =

N∑
1

√
(σCON2D

i −σAnalytical
i )

2

N |σ(Tmelt)−σ(Tcold)| × 100

(4.61)

Accuracy of the CON2D predictions increases if the mesh and time step are refined

together. A fine uniform mesh of 0.1mm, with small uniform time step of 0.001sec., produces

relative average errors within 1% for temperature and within 2% for stress. However, the

computational cost is also high. Note that the inaccuracy is severe at early times of the

simulation, especially for the stress predictions. This is because the solidified layer initially

spans only a few elements. As the solid portion of the plate grows thicker, the mesh size

and time step requirements become less critical. Thus, a non-uniform mesh with increasing

time step size is better to satisfy both accuracy and efficiency. The optimal choice, used

in Figures 4.18 and 4.19, gives a decent prediction with the relative average errors within

2% for temperature and 3% for stress. A similar mesh is adopted for the actual billet

casting simulation. This demonstrates that the model is numerically consistent and has an

acceptable mesh.

4.11 Simulation of Billet Casting

To further validate the feature of fully coupled heat transfer and stress analysis and the

contact algorithm, CON2D is next applied to simulate a plant trial conducted at POSCO,
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Pohang works, South Korea [41], for a 120mm square section billet of 0.04%C steel cast

at 2.2m/min, where measurements are available. The mold had a single linear taper of

0.785%/m. Details of the material and operation conditions are given in Tables 4.5 and

4.6, respectively. Two simulations are performed to predict the temperature, stress and

deformation evolutions of the billet shell using the 2-D L-shaped domain (Figure 4.2) and a

slice domain through the centerline of the billet face (Figure 4.24) similar to the Boley and

Weiner analytical problem. The interfacial heat transfer constants for both simulations are

given in Table 4.1 and are found with the help of a dedicated heat transfer code, CON1D [2].

The superheat flux profile is obtained from coupled computations of turbulent flow and

heat transfer in a round billet caster by Khodadadi et. al. [164] for the case of Grashof number

(Gr = gW 3 (TLE(Tpour)− TLE(Tm))/ν2) is 1 × 108. This value is the closest case to the

current problem conditions where the Grashof number is 2× 107 and confirms that natural

convection is unimportant in this process. The heat flux is calculated from the Nusselt

number, Nu, and mean liquid temperature, Tm, results given as a function of distance below

meniscus [164], using their values of liquid steel conductivity, k = 29.8W/mK, mold section

size, W = 200mm and 33oC superheat, except for re-adjusting the superheat temperature

difference as follows:

qsup =
Nu k(Tm − Tliq)

W

(Tpour − Tliq)posco

(Tpour − Tliq)khod

(4.62)

where Tpour and Tliq are the pouring and liquidus temperatures, respectively. The resulting

superheat flux profile is shown in Figure 4.25. Note that the total heat integrated from

Figure 4.25 over the mold surface, 48.6kW , matches the superheat for the current problem,

(Tpour − Tliq) ρcpvc = 46kW .

The heat flux and mold wall temperatures predicted by CON2D along the billet face

center are shown in Figures 4.26 and 4.27 respectively. These results slightly under-predict

the measurements of thermo-couples embedded in the mold wall, which should lie almost

exactly between the hot and cold face temperatures [40]. The total heat extracted by the

mold, 128.5kW , is 17% lower than the plant measurements based on a heat balance of the
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mold cooling water (8K temperature rise at 9.2msec−1 slot velocity) of 154kW [41]. This is

consistent with under-prediction of the mold temperatures.

The predicted shell growth for this CON2D simulation is given in Figure 4.28, as indicated

by the evolution of the solidus and liquidus isotherms. This is compared with measurements

of the solid-liquid interface location, obtained by suddenly adding FeS tracer into the liquid

pool during steady-state casting [41]. Longitudinal and transverse sections through the billet

are cut from the final product. The transverse section is 285mm from the meniscus when the

FeS tracer is added. Because FeS tracer cannot penetrate the solid steel shell, sulfur prints of

sections cut through the fully-solidified billet reveal the location of the solidification front and

shell thickness profile at a typical instant during the process [41]. The CON2D predictions

match along the centerline beyond the first 80mm below the meniscus, where the shell

remains in contact the mold, suggesting that the heat transfer parameters are reasonably

accurate.

The shell surface position profile down the centerline is shown in Figure 4.29, together

with the mold wall position, which includes both the taper, and the mold distortion profile

calculated from the CON1D temperature results using Equation 4.39 [2]. The shell surface

generally follows the mold wall with no obvious penetration, validating the contact algorithm.

Note, however, that a slight gap opens up within the first 25mm. Although this effect is

believed to be physically reasonable owing to rapid initial shrinkage of the steel, it is exag-

gerated here, owing to numerical difficulties during the initial stages of solidification. This

causes an over-prediction of the drop in initial heat flux and temperature observed in Figure

4.26. This drop is followed by increased heat flux (and corresponding mold wall temperature)

after full contact is re-established, which has also been observed in other measurements [175].

The simulation features a detailed prediction of temperature, shrinkage, and stress in the

region of the rounded billet corner. The evolution of the increases in gap size and surface

temperature are given in Figures 4.30 and 4.31 near (20mm) to the centerline of the billet

face and at various locations, 0, 5, 10, and 15mm, from the billet corner. The corresponding
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large drops in heat flux are included in Figure 4.26. The solidifying shell quickly becomes

strong enough to pull the billet corner away from the mold wall and form a gap around the

corner region. The gap greatly decreases local heat flow in the corner, causing the mold wall

temperature to drop.

The drop in mold temperature near the corner over the initial 80mm is more than ex-

pected in reality, because the simple mold model of CON2D in Equation 4.33 neglects heat

conduction around the corner and along the casting direction. Thus, these predictions are

not presented. This latter effect, which is included in CON1D [2], also contributed to the

convergence difficulties along the centerline discussed in Figure 4.29. Fortunately, it has

little other effect on heat flux or shell behavior.

Figure 4.30 shows how a permanent gap forms after 40mm below the meniscus, which

grows to over 0.3mm thick by half-way down the mold, growing little after that. Correspond-

ing gaps form adjacent to the corner at later times, reaching smaller maxima part-way down

the mold. These gaps form because the simple linear taper of the mold walls is insufficient

to match shrinkage of the shell. The corner effect decreases with distance from the corner

and disappears beyond 15mm from the corner.

The corner gap and drop in heat flux causes a hot spot at the corner region, as shown

in the surface temperature profiles of Figure 4.31. CON2D predicts that the shell corner

reheats slightly and reaches 150oC hotter than the billet face center, for the conditions of this

trial. The decreased heat flux also produces less solidification in the corner, as illustrated in

Figure 4.32 at 285mm below the meniscus. The predicted shell thinning around the corner

is consistent with the plant measurements from the sulfur print, as quantified in Figures

4.28 and 4.32. The predictions here are also consistent with those of Park et. al. , who

modelled how increasing billet mold corner radius leads to more severe hot and thin spots

near the corner [2]. This tends to validate the CON2D model and the simple constant

interfacial heat transfer parameters used to produce these results. Improving the accuracy
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would likely require a more complex model of gap heat transfer that considered details of

surface roughness, including differences between center and corner.

Figure 4.33 shows the evolution of surface stress components near the centerline of the

billet face. Stress normal to the surface (x-direction) is effectively equal to zero, which

indicates that the 0.785%/m mold taper never squeezes the billet. The stress components

perpendicular to the solidification direction (y-direction tangential to surface and z-casting

direction) are generally very similar, which matches the behavior expected from the analytical

test solution [4]. These stresses grow slowly in tension during the period of increasing heat

extraction rate from 20 to 100mm below the meniscus. They reach a maximum of almost

3MPa due to the increase in shell strength at lower temperature that accompanies the

transformation from δ-ferrite to austenite. This is shown in the through-thickness profile

of these same stress components in Figure 4.34a, but calculated with the 1-D slice domain.

The surface tensile stress peak does not penetrate very deep, owing to the very thin layer of

material colder than 10% delta-ferrite. Thus, this peak might cause very shallow fine surface

cracks, but nothing deeper.

The surface stresses in Figure 4.33 suddenly turn compressive beyond 100mm due to the

sudden change in heat extraction rate at this distance (see Figure 4.26). Surface compression

arises because the subsurface begins to cool and shrink faster than the surface. This causes a

corresponding increase in subsurface tension near the solidification front that might lead to

subsurface cracks. The surface stays in compression from −4 to −6MPa for the remaining

time in the mold.

During the time beyond 100mm, the stress profile, Figure 4.34a, is qualitatively similar to

that of the analytical test problem, as expected. Differences arise from the variation in steel

strength between the δ-ferrite and austenite. Stresses in the liquid, mushy zone and δ-ferrite

are always very small. Tensile stress increases rapidly during the phase transformation,

which takes place at the low end of the δ + γ region of Figures 4.34a and 4.34c. When

the δ-ferrite region is thin, this tensile stress is more likely to create strains significant to
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generate cracks. These results illustrate the widely accepted knowledge that surface cracks

initiate near the meniscus, while subsurface cracks form lower down.

Figures 4.34b and 4.34d show the different components of strain (y-direction) through

the shell thickness near the billet face center corresponding to the stresses in Figures 4.34a

and 4.34c. Thermal strains dominate in the solid and generate the other strains due to the

constraint of adjacent layers of steel. Small elastic strains are generated by the mismatch of

thermal strain, although the stresses they generate may still be significant. Inelastic strain

is generated in regions of high-stress, starting in the δ + γ region. It is high at the surface at

the top of the mold and later grows in the austenite. Note that inelastic strains are all tensile

throughout the shell. The δ and mushy zones behave elastically with very low stresses. This

is fortunate as these phases are very weak and cannot accommodate much inelastic strain

before cracking. Flow strain in the liquid occurs to accommodate the total strain, which is

naturally flat, owing to the constraint by the solid.

Figure 4.35 shows the “hoop” stress component (y direction parallel to billet surface and

perpendicular to casting direction) at an off-corner location (10mm above the billet corner)

through the shell thickness at 100mm, 500mm, and 700mm (mold exit) below meniscus.

Stresses all behave similarly to the corresponding locations along the billet centerline, except

that the tension and compression are lower. This is expected due to the slower cooling rates,

shallower temperature gradients, and higher temperatures near the corner.

Figures 4.36 and 4.37 show contours of the stress and inelastic strain components per-

pendicular to the solidification direction superimposed on the distorted billet at mold exit

with isotherms. The insufficient 0.785%/m taper of this mold is unable to support the billet

which allows a slight bulge (0.25mm at mold exit). Regions of high tensile stress and inelastic

strain are indicated at the off-corner subsurface (10 ∼ 20mm from the corner and 2 ∼ 6mm

beneath the surface).
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4.12 Figures and Tables
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Fig. 4.1: Schematic of the modeling domain of casting billet
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Fig. 4.2: L-shape mesh with 3-node heat transfer and 6-node stress elements
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Fig. 4.3: Schematic of thermal resistor model of the interfacial layer between mold and

shell surface
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Fig. 4.21: Time step size effect to CON2D stress prediction
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Table 4.1: Parameters in the heat resistor model

Cooling water heat transfer coefficient, hwater(W/m2K) 22000 25000
Cooling water temperature, Twater(

oC) 30 42
Mold wall thickness, tmold(mm) 6
Mold wall conductivity, kmold(W/mK) 360
Gap conductivity, kgap(W/mK) 0.015
Contact resistance, rcontact(m

2K/W ) 7.5× 10−4

Mold wall emissitivity, εm 0.5
Steel emissitivity, εs 0.8

Table 4.2: Value of the parameters in enthalpy equation 4.56

Phase b−1 b0 b1 b2 b3

α T ≤ 800 5188 −86 0.505 −6.55× 10−5 1.5× 10−7

800 < T ≤ 1000 −1.11× 106 4056 −4.72 2.29× 10−3 0
1000 < T ≤ 1042 0 5780 −11.5 6.238× 10−3 0
1042 < T ≤ 1060 0 −18379 34.87 −0.016013 0
1060 < T ≤ 1184 −5.1766× 106 12822 −10.068 2.9934× 10−3 0

δ 0 5.09× 104 4.41× 102 8.87× 10−2 0
γ 0 9.35× 104 4.30× 102 7.49× 10−2 0
l 0 −1.05× 105 8.25× 102 0 0

Table 4.3: Carbon content function in the enthalpy equation 4.56

α 1
δ [18(%C) + 2.0× 103(%C)2][44(%C) + 1200]−1

γ [37(%C) + 1.9× 103(%C)2][44(%C) + 1200]−1

l 1
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Table 4.4: Constants used in Boley and Weiner analytical solution

Conductivity (W/mK) 33.0
Specific heat (kJ/kgK) 0.661
Latent heat (kJ/kg) 272.0
Elastic modulus in Solid (GPa) 40.0
Elastic modulus in Liquid (GPa) 14.0
Thermal linear expansion coefficient (1/K) 0.00002
Density (kg/m3 7500.0
Poisson’s ratio 0.3
Melting temperature (oC) 1494.4
Liquidus temperature (oC) 1494.45
Solidus temperature (oC) 1494.35
Cold surface temperature (oC) 1000.0
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Table 4.5: Material details in billet plant trial at POSCO

Steel composition (wt%) 0.04C
Liquidus temperature (oC) 1532.1
70% Solid temperature (oC) 1525.2
90% Solid temperature (oC) 1518.9
Solidus temperature (oC) 1510.9
Austenite rightarrow α-ferrite starting temperature (oC) 781.36
Eutectoid temperature (oC) 711.22

Table 4.6: Simulation conditions in billet plant trial at POSCO

Billet section size mm×mm 120× 120
Working mold length mm 700
Total mold length mm 800
Casting speed (m/min) 2.2
Mold corner radius (mm) 4
Taper %/m 0.785 (on both faces)
Time to apply ferrostatic pressure (sec.) 2.5
Mesh size (mm×mm) 0.1× 0.1 ∼ 1.4× 1.0
Number of nodes (varies with section size) 7381
Number of element (varies with section size) 7200
Time step size (sec.) 0.0001 ∼ 0.005
Pouring temperature (oC) 1555.0
Coherency temperature (oC) 1510.9
Gap tolerance, dmin 0.001 (0.1%)
Minimum gap, dgapmin (mm) 0.012
Penetration tolerance, dpen (mm) 0.001

125



Chapter 5. Critical Shell Thickness Due to Tensile

Rupture

As indicated in Chapter 1, one of the phenomena limiting the casting speed of a caster

is the excessive transverse strain due to ferrostatic pressure from the liquid steel to the thin

shell. This excessive tensile strain can lead to longitudinal cracks, or “breakouts” at extreme

conditions when the solidifying shell is not thick enough to withstand the ferrostatic pressure

when the shell is below the mold exit.

The shell thickness at the mold exit directly depends on the amount of heat extracted

by the mold. Increasing casting speed reduces the dwell time which the shell stays in the

mold and total heat extracted by the mold. Thus, higher casting speed leads to thinner

shell at the mold exit. Note that increasing casting speed reduces the shell thickness all over

the section perimeter. In addition, there are other phenomena, such as oscillation marks,

inadequate mold taper, and so on, influencing the local shell thickness. To explore the critical

shell thickness, CON2D is applied to a thin section through the solidifying shell. The shell

thickness at the mold exit is obtained as a function of total heat extracted by the mold

regardless the cause of the heat extraction. The model tracks the evolution of temperature,

solidification, stress, and strain in a slice through the solidifying shell as it moves down

through the caster [59]. The model domain, illustrated in Figure 5.1, is a slice through the

solidifying shell at the center of one side of the continuous cast strand. This slice domain is

0.2mm thick and has a maximum length of half of the strand section size. A fine mesh of 10

nodes per mm is used to achieve acceptable accuracy. This mesh is connected into 3-node

and 6-node triangle elements for heat transfer and stress analysis, respectively.

The effects of ferrostatic pressure are modelled by applying a force onto the edges of the

solidifying shell domain. This force, F, is evaluated with Equation 5.1, which balances the

stress across the shell at every distance, z(m), below the mold exit with the local ferrostatic
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pressure, ρ(Kgm−3)g(ms−2)z(m).

F (Nm−1) = ρgz(W − 2b)/2 (5.1)

where W (m) is the slab thickness for slab casting or the section size for billet casting, and

b(m) is the shell thickness as shown in Figure 5.1.

5.1 Heat Flux Profile

The average heat transfer rate over the continuous casting mold has been measured to

drop with time, as illustrated in Figure 5.2 [5–8]. These data are compiled from measure-

ments of many processes including thin strip casting, thin slab casting, and conventional

billet and slab casting, much of it by Brimacombe [8]. Note that most of the data fall on

roughly the same curve, despite the differences between the processes. Figure 5.2 shows

that the average heat flux removed while the shell is in the mold correlates well with time

without any extra gap formed between the mold and the shell. Based on these measurements,

the following empirical formula is used to describe the average heat flux, q̄(MWm−2), as a

function of contact time in the mold, te(s).

q̄(MWm−2) = 4.05t−0.33
e (5.2)

This average heat flux curve is then generalized for any continuous casting process. The

instantaneous heat flux, q(MWm−2), is obtained by multiplying Equation 5.2 by te(s) and

then differentiating with respect to time. The function is truncated at short times to give:

q =





12.4 t ≤ 0.01sec.

2.71t(sec.)−0.33 t > 0.01sec.
(5.3)
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By relating the time below the meniscus, t, to the casting speed, this instantaneous heat

flux is transformed into a function of distance below the meniscus. Examples are shown in

Figure 5.3 for four different cases with total heat extracted by a 1100mm long mold.

5.2 Materials Detail

Four steel grades are considered in this work: 0.003%C, 0.044%C, 0.1%C and 0.44%C

carbon steels, which also contain 1.52%Mn, 0.34%Si, 0.015%S and 0.012%P . The solidus

and liquidus temperatures, given in Table 5.1, are based on the non-equilibrium calculations

of Won et. al. [167]. A critical strain criterion described in Section 2.2.2 is used to define

failure of the shell. The damage strain described in Section 4.8 simplifies to the total strain

for the thin slice domain because the total strain along the y direction shown in Figure 5.1 is

perpendicular to the primary dendrite arms, which are along the x direction, and the same

as the total strain across the brittle temperature range. The critical strains shown in Table

5.1 are calculated by Equation 2.1. The strain rate is taken just below the mold exit which is

typically the highest strain rate during all the time below mold exit. This gives the smallest

critical strain for a case and generates conservative fracture predictions. The critical strains

decrease as the carbon content of of steel increases. This is because higher carbon steel has

larger brittle temperature range.

5.3 Typical Results

Parametric studies are conducted with CON2D to investigate temperature, stress, and

critical shell growth for total heat extracted by mold from 1.0 to 70MJm−2, section sizes

from 50 to 400mm, working mold lengths from 300 to 1100mm and four different steel grades.

Results for two typical simulations are shown in Figures 5.4 and 5.5 for 0.044%C steel cast in

a 200mm square bloom mold with 700mm working mold length (800mm total length) with

the total heat of 65.5MJm−2 and 7.4MJm−2 extracted by mold. The 65.5MJm−2 case is
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a normal amount of heat removed by mold in practice, while the 7.4MJm−2 case generates

the critical shell thickness for this steel and mold. Figure 5.4 shows the surface temperature,

shell thickness, inelastic strain rate and total strain histories for these two cases. Figures 5.5

show the temperature and stress distributions through the solidifying shell just below mold

exit.

The surface temperature drops sharply just below the meniscus and then reheats. This

is due to the very high heat flux expected at the beginning of solidification. Reducing the

total heat removed by the mold generates a hotter and thinner shell at mold exit. As the

strand moves below the mold, ferrostatic pressure starts to exert a load on the inside of

the shell. At high heat removal case (65.5MJm−2), the shell is thick enough to withstand

this pressure so the inelastic strain rate due to creep is very small (less than 0.01%sec−1).

Thus, the total strain is dominated by the thermal shrinkage of the strand so decreases with

distance below the mold.

For the 7.4MJm−2 heat removal case (generates critical shell thickness at mold exit),

however, the thin and hot shell creeps rapidly under the ferrostatic pressure. This generates

high inelastic strain rates, which reach a maximum of almost 10%sec−1 just below mold

exit. The inelastic strain rate continuously drops with distance below mold exit because the

increase in shell thickness is much more important than the increase in ferrostatic pressure.

The result is a rapid increase in tensile strain below mold exit, which reaches over 4.5%

for this case. If the total strain reaches the critical fracture strain, (Table 5.1), the shell is

assumed to have failed. Thus, the total strain saturates about 500mm below the mold exit

for this case. In general, the most likely time for failure is in the first few seconds below

mold exit, which corresponds to the time when many breakouts occur in practice.

Figures 5.5a and b show the temperature and stress profiles through the thickness of

the solidifying shell for the two heat flux cases, respectively. Temperature increases almost

linearly from the surface temperature (left) to the liquid (right). Naturally, there is no stress

in the liquid and there should be virtually no stress in the mushy zone. It is significant to
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note that there is very little stress generated in the delta-ferrite portion of the solid shell. As

the temperature drops, stress builds up in the cooler parts of the shell and reach a maximum

at the shell surface. The colder austenite portion of the shell thus carries most of the stress.

5.4 Critical Shell Thickness

The results in the previous section showed that plastic strain due to creep will increase

greatly just below the mold exit, if the shell is too hot and thin. The rate of creep strain

accumulation decreases as the shell thickens. For each simulation in this study, this accu-

mulation of strain is continued until the plastic strain rate dropped off to below 0.1%sec−1.

If the total strain at that moment reached the failure strain criterion measured for that steel

(Table 5.1), then the shell is assumed to fail, as a longitudinal crack or breakout. The shell

thickness at that time defines a critical shell thickness because the conditions which produce

thicker shells never fail. In this work, the critical shell thickness is found for different steel

grades, superheats, section sizes and mold lengths by decreasing the total heat removed by

mold until the failure criterion is reached. The effects of each of these variables are shown

in Figures 5.7 ∼ 5.10.

Figure 5.7 shows the critical shell thickness for steels with different carbon contents cast

under similar conditions. It is interesting that the critical shell thickness is nearly 3mm for all

4 grades, with the peritectic 0.1%C steel being slightly less. This indicates that the peritectic

steel is actually slightly stronger and more crack resistant than the other steels. The fact

that this steel is more crack prone in practice is thus due solely to its greater tendency to

have shell surface nonuniformities that cause the local heat flux to be too small, leading to a

local thinner shell. One of the factors generating nonuniform shell is the oscillation mark due

to mold shaken whose purpose is to prevent mold sticking. Figure 5.6 shows the oscillation

mark depth for steels with different carbon contents [9,176–180]. The peritectic 0.1%C steel

has much deeper oscillation marks than other carbon steels. Thus, this steel grade thereby

has a greater chance of having a local thin spot less than the critical thickness.
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Figure 5.7 also shows that the makeup of the shell changes greatly with steel grade. As

the carbon content increases, the solid portion of the shell decreases. The shell also becomes

stronger, however, because the austenite fraction increases. A much thicker δ-ferrite shell is

needed to support the same load. On the other hand, the mushy zone becomes thicker as

the carbon content increases with the wider freezing range. The net result is a critical shell

that has about the same thickness, and requires about the same amount of heat removal to

produce, for all of the grades.

Increasing superheat leads to a hotter and thinner solidifying shell, for a given heat

removal. Consequently, the amount of heat needed to produce the critical shell thickness

decreases. The critical shell thickness increases only slightly, however, owing to the hotter

surface temperature. This slight effect of superheat is shown in Figure 5.8.

Increasing the section size causes the critical shell thickness increase, as shown in Figure

5.9. This is because a thicker shell is needed to withstand the larger ferrostatic load.

Shortening the mold length causes the critical shell thickness to increase, as shown in

Figure 5.10. This is because the contact time is shorter, so the shell is hotter and weaker for

a given thickness. Thus, a thicker shell is needed to get sufficient strength.

5.5 Critical Average Heat Flux in Mold

Decreasing the total heat removed by the mold results in hotter, thinner shells, which

experience increased creep strain. This is seen in Figure 5.11, which shows the total strain

(when inelastic strain rate drops to 0.1%s−1) as a function of the average heat flux in mold

for the 0.044%C steel. The strain which exceeds the critical fracture strain (4.5% for this

steel) defines both the critical average heat flux in mold and the corresponding critical shell

thickness, which is discussed in the previous section. The effect of steel grade, section size,

and working mold length on critical casting speed are shown in Figure 5.12.

The effect of steel grade on critical average heat flux is shown in Figure 5.12a. The trends

correspond naturally with the effect of grade on critical shell thickness. The thinnest critical
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shell, for 0.1%C steel, can tolerate the lowest average heat flux in the mold. Figures 5.8

and 5.12a both show that increasing the carbon content makes the solid portion of the shell

stronger.

Figure 5.12b shows that increasing the working mold length allows lower average heat flux

to be tolerated. This is because the contact time increases and leads to a larger amount of

total heat extracted by the mold, then, a thicker shell at the mold exit. However, increasing

the mold length requires increased attention to mold taper and lubrication. In order to

maintain good contact between the shell and the mold, and thereby maintain good heat

transfer, the mold must be tapered to match the shrinkage of the steel. This task becomes

more difficult with a longer mold, which requires a nonlinear taper. In addition, the longer

mold allows more time for the temperatures to drop and the liquid flux in the gap to solidify.

Friction against the solid flux generates much higher longitudinal stresses in the shell, which

could restrict the critical casting speed.

Figure 5.12c, shows that increasing the section size should increase the critical average

heat flux. This is due to the greater ferrostatic pressure, as discussed for Figure 5.9. However,

the average heat flux increase is less than linear.

5.6 Implications

The average heat flux in the mold is directly related to the shell thickness at mold exit.

For the same casting speed and the working mold length, the higher is the average heat flux,

the thicker and stronger is the shell thickness at the mold exit. However, as indicated at

the beginning of this chapter, many phenomena influence the average heat flux in the mold.

Among them, casting speed and the effective depth of oscillation marks are discussed here.

5.6.1 Casting Speed

Figure 5.2 indicates that increasing casting speed shortens the dwell time of the strand

which increases the average heat flux, but lowers the total heat removed in the mold. The
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critical casting speed as a function of the steel carbon content, working mold length, and

the section size are obtained from the critical average heat flux (Figure 5.12) and shown in

Figure 5.13.

The effect of steel grade on critical casting speed is shown in Figure 5.13a. The trends

correspond naturally with the effect of grade on critical shell thickness. The thinnest critical

shell, for 0.1%C steel, can tolerate a highest casting speed.

Figure 5.13b shows that increasing the working mold length allows higher casting speed

to be tolerated. This is because the contact time increases and leads to a larger amount of

total heat extracted by mold, then, a thicker shell at the mold exit.

Figure 5.13c, shows that increasing the section size should decrease the critical casting

speed. This is due to the greater ferrostatic pressure force, as discussed for Figure 5.9. As

the average heat flux increases, the critical casting speed decrease with section size is less

than linear.

The predicted huge critical casting speed (between 10 and 20 m/nin) is not possible in

practice because other phenomena, such as sub-mold bulging, will lead to cracks and even

“breakouts” before this speed can be reached. Therefore, only the local high heat resistance

is able to generate the critical shell thickness as thin as 3mm.

5.6.2 Depth of Oscillation Marks

Figure 5.14 indicates that increasing the effective depth of the oscillation marks linearly

decreases the average heat flux in the mold. This is due to the oil filled in the oscillation mark

space have higher heat resistance than that of the steel. Casting conditions of the cases in

Figure 5.14 are shown in Table 5.2. The relation between the average heat flux, q̄(MWm−2)

in the mold and the oscillation mark depths, dosc(mm), are fitted from the measurements of

133



the oscillation mark depths shown in Figure 5.14.

q̄ =





2.1993− 0.92219dosc , V = 2.2m/min

2.4178− 0.65279dosc , V = 3.4m/min
(5.4)

The critical oscillation mark depths at 2.2m/min casting speed, as a function of the steel

carbon content, working mold length, and the section size are obtained from the critical

average heat flux (Figure 5.14) and Equation 5.4, and shown in Figure 5.15. The trends

correspond naturally with the effect of grade, working mold length and the section size on

critical average heat flux as discussed in previous section. Note that the critical oscillation

mark depths are very close for all different parameters investigated, which indicates the

average heat flux in the mold is very sensitive to the variations of the oscillation mark

depths.

Note that the critical casting speeds and the critical oscillation mark depths indicated

in this work are much higher than the practical casting speeds [10] and the oscillation mark

depths [9] reported from industry. This implies that neither the casting speed nor the

oscillation mark depth could generate the critical shell thickness at the mold exit alone.

Figure 5.14 shows that increasing casting speed will decrease the oscillation mark depth.

Therefore, the combination of these two factors is not likely to generate the critical oscillation

mark depth reported in this work. The critical oscillation mark depths could represent the

critical gap between the shell and the mold resulting the critical shell thickness. The critical

gap values are at the order of a couple of millimeters which are very unlikely to encounter

at a practical caster under proper operation conditions. This suggests that other issues need

to be investigated as the primary factors causing “breakouts”.
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5.7 Figures and Tables
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Fig. 5.1: Slice model domain with finite element mesh and region of shell modeled
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Table 5.1: Solidus and liquidus temperatures and critical strain

Steel Type Liquidus (oC) Solidus (oC) ∆TB (oC) ε̇ (%s−1) εc (%)
0.003%C 1524.7 1496.9 2.78 0.88 6.1
0.044%C 1521.0 1481.7 3.93 0.97 4.5
0.1%C 1516.0 1460.8 5.52 0.77 3.4
0.44%C 1485.4 1369.0 11.64 0.52 1.8

Table 5.2: Casting conditions for practice shown in Figure 5.14 for 0.27%C steel casting

Osc. Mark Osc. Mark Frequency Stroke Pitch
Depth (mm) Width (mm) (cpm) (mm) (mm)

V=2.2 and 3.4m/min 2.2m/min 3.4m/min
0 0 30 2 1.89 1.22

0.1 2 6 4 9.44 6.11
0.2 4 3 8 18.89 12.22
0.4 8 1.5 12 37.78 24.44
0.5 10 1.5 12 37.78 24.44
0.65 13 1.5 12 37.78 24.44
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Chapter 6. Billet Sub-Mold Bulging

Sub-mold bulging is an important factor influencing the initiation of various internal

cracks as discussed in Chapter 1. Partially solidified steel shell is taken ferrostatic pressure

from the liquid steel due to gravity and bulges out. This issue becomes more severe for billet

casting due to its lack of sub-mold support rollers. Sub-mold bulging leads to tensile stress

and inelastic strain near the solidification front around strand corner and intends to generate

off-corner sub-surface cracks when the stress or strain is high enough [121].

CON2D is applied to simulate one quarter of a billet section to predict the evolution of

its temperature, stress and strain of a 0.27%C plain carbon steel for various section sizes

and working mold lengths. The casting speed is increased for each modelled case until the

maximum damage strain exceeds the critical strain leading to hot tear cracks. The casting

speed in which the hot tear cracks just initiate is the critical casting speed to avoid the hot

tear cracks.

6.1 Modeling Domain

The modeling domain is a L-shaped region in one quarter of a transverse section from

continuous casting steel billet assuming symmetrical temperature and stress distributions

about the billet center lines, as shown in Figure 4.1. Figure 4.2 shows the mesh of the 3-

node triangle elements used for heat transfer analysis and 6-node mesh of triangle elements

for stress analysis, respectively.

This domain includes the entire solid shell in the upper portion of the caster, but ignores

some of the liquid near the billet center to save on computation requirements. Smaller size

elements, 0.1mm, are used near the surface to produce more accurate thermal stress/strain

prediction during the initial solidification period. Larger size elements, 1.0mm, are used near

the center to reduce computational cost substantially, without sacrificing much accuracy.

This choice is validated by comparing with an analytical solution discussed in section 4.10.

145



6.2 Heat Flux Profile

The instantaneous interfacial heat flux profile down the mold is usually found from ther-

mocouple measurements in the mold. The profile is then integrated to find the average

heat flux in the mold, which should match a global heat balance with the cooling water.

In this work, the procedure is reversed to estimate the instantaneous heat flux profile. The

average heat flux data points measured by several investigators [6, 10, 15, 181–183] and its

fitted average heat flux curve, which is expressed by Equation 6.1, are shown in Figure 6.1.

Slab caster data with mold flux is seen to be lower than billet cast means lubricated with

oil. It represents the billet casting with oscillation marks between 0.2 and 0.6mm deep [9]

q̄(MWm−2) = 9.5579t(s)−0.504 (6.1)

The instantaneous heat flux function of distance down the mold, which is needed in the

model, is obtained by differentiating Equation 6.1. At short times, the instantaneous heat

flux drops linearly with time, which is indicated by strip casting research [184, 185]. This

assumption also avoids the unrealistic high instantaneous heat flux produced by differentia-

tion. The instantaneous heat flux function is given in Equation 6.2 and heat flux curves for

several casting speeds are plotted in Figure 6.2.

q(MWm−2) =





5− 0.2444t(s) t ≤ 1.0s

4.7556t(s)−0.504 t > 1.0s
(6.2)

The instantaneous heat flux is assumed to be uniform around the perimeter of the billet

surface. This corresponds to the assumptions of ideal taper and perfect contact between the

shell and mold. After the billet leaves the mold, its surface temperature is kept unchanged

from its circumferential profile at mold exit. This eliminates the effect of spray cooling prac-

tice on sub-mold reheating or cooling cycling which leads to surface stress/strain variation

and generates more cracks, then, slows down casting speed. This configuration and the ideal
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mold taper [186] lead to upper limit of the critical casting speed to avoid hot tear cracks.

Fluid flow in the liquid pool may create non-uniform removal of the superheat [163]. The

effect is minor when the pouring temperature is close to liquidus temperature and is ignored

in this work, which treats superheat in the liquid with simple conduction.

6.3 Parametric Study and Computational Details

To investigate the maximum casting speeds under different mold lengths and section

sizes, nine sets of simulations are performed for the 3 mold lengths and 3 section sizes

shown in Table 6.1 for 0.27% plain carbon steel whose chemical compositions and the phase

transformation temperatures are listed in Table 6.2.

For each section size and working mold length, simulations are performed with various

casting speeds and evaluated using both hot tear failure criteria in discussed in section 2.2.2

and 1mm maximum sub-mold bulging criterion to determine whether the failure of the shell

occurs. The damage strain is obtained by accumulating inelastic strain component along

“hoop” direction of the solidifying shell. The “hoop” direction is defined along x-axis for

the horizontal part and y-axis for the vertical part of the modeling domain in Figure 4.2.

This direction is perpendicular to the primary dendrite arms. The case with 120mm section

size and 700mm working mold length, which is highlighted in Table 6.1, is chosen as a base

case to analyze since it is widely used at many casters. Mesh size continuously changes from

0.1mm to 1.4mm from slab surface to the center. Time step size stepwisely changes from

0.001sec. to 0.5s. Each simulation is divided into two parts, one within the mold and the

other below the mold. It takes approximately 4 hours to complete a single simulation with

around 4000 time steps on a dual Pentium III 933MHz CPU workstation with 1GB RAM

running Windows 2000 Pro OS.
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6.4 Typical Results

6.4.1 Heat Transfer Model Results

Figure 6.3 shows the shell thickness histories of the base case for 2.2m/min and 5.0m/min

casting speed. The shorter dwell time in the mold leads to less total heat extracted. Thus,

the shell thickness at the mold exit is thinner at higher casting speed.

Figure 6.4 shows the corresponding billet surface temperatures. Naturally, higher surface

temperature is produced by higher casting speed, due to the shorter time at any given

distance down the mold. However, the increase is not very large because of the higher heat

flux produced at shorter times (high speed) as given in Figure 6.1. Figure 6.5 shows the

surface temperature at mold exit which is assumed to stay unchanged below the mold exit.

Surface temperature far from the corner is approximately constant due to one-dimensional

heat transfer. Temperature drops toward the corner despite the constant heat flux profile

around the perimeter. This is due to 2D heat transfer at the corner.

6.4.2 Stress Model Results

Figure 6.6 shows the distorted temperature contours at mold exit and 200mm below the

mold exit for both casting speeds. It is observed that the thinner, hotter, and weaker shell

bulges more at high casting speed under the ferrostatic pressure. Figure 6.10 quantifies the

extent of surface displacements at mold exit and 200mm below mold exit for both casting

speeds. This shows that bulging increases rapidly after a threshold has been crossed in either

excessive temperature or insufficient shell thickness.

Figures 6.7 and 6.8 show hoop stress and total strain contours constructed from the

stress results based on stress and strain in x direction at horizontal arm and the y direction

at vertical arm. High values appear at the off-corner sub-surface region, due to a hinging

effect that the ferrostatic pressure over the entire face exerts around the corner. This bends

the shell around the corner and generates the high subsurface tensile stress at the weak
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solidification front in the off-corner subsurface location. This tensile stress increases at higher

casting speed. There is no obvious high stress and strain region at the low casting speed.

Surface hoop stress and total strain are compressive at mold exit and remain compressive at

low casting speed. This indicates no possibility of surface cracking. However, tensile surface

hoop stress and strain are generated below the mold at high speed in Figures 6.717d and

6.8d at face center due to excessive bulging. These tensile stress and strain might contribute

towards surface longitudinal cracks.

Figures 6.11 and 6.12 show the evolution of the strains for the point at (6.7mm, 17.4mm),

which is in the high strain region (off-corner subsurface), for the two casting speeds. Little

plastic strain is developed when the billet exits the mold at normal casting speed, 2.2m/min.

Substantial plastic strain is developed at higher casting speed, 5.0m/min. Moreover, much

more inelastic strain, flow strain and plastic strain, is developed during the brittle tempera-

ture range, ∆TB, between 90% and 99% of solid forms. Inelastic strain developed here could

contribute to longitudinal hot tearing cracks at the off-corner subsurface location. The strain

histories also indicate that most of the inelastic strain develops just below mold exit. As

the billet moves farther below mold exit, the shell thickens and becomes strong enough to

withstand the ferrostatic pressure, as the average temperature across the billet section drops.

Figure 6.13 shows contours of the out-of plane stress, (along z axis: casting speed di-

rection), for this case at both casting speeds of 2.2m/min and 5.0m/min. High tensile

z-stress is found at the corner region for both cases. This is due to over cooling from the 2D

heat extraction there. The colder corner tries to shrink more than the off-corner and center

regions. However, each x-y section through the long billet has to remain planar. Thus, the

corner region is stretched by the off-corner region, while the off-corner region is squeezed by

the corner region. As a consequence, axial tensile stress is developed at the corner region

and compressive stress at the off-corner. This tensile stress might contribute to forming

transverse corner surface cracks.
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6.4.3 Failure Mechanism

The damage strain accumulated during the brittle temperature range could lead to hot

tearing cracks because the thick dendrites in this temperature prevent the surrounding liquid

from compensating the solid expansion. Figure 6.14 shows the contours of damage strain

accumulated during the brittle temperature range, ∆TB, for the 120mm section size and

700mm working mold length with two casting speeds of 2.2m/min and 5.0m/min. The

highest values of damage strain appear at the off-corner sub-surface region along the “hoop”

direction which is perpendicular to the growth direction of the primary dendrite arms. This

location matches the position of the crack in Figure 6.9. The maximum value of the damage

strain and the number of nodes which exceed the corresponding critical strain for all the

casting speeds simulated for this case (120mm section and 700mm working mold length) are

also listed in Table 6.3. Moreover, significantly higher values (1.5% and 1.7%) are found for

the higher casting speed cases (5.0m/min and 6.0m/min). At 5.0m/min casting speed, the

damage strain in the hoop direction exceeds the damage threshold (0.49%) calculated by

Equation 2.1 at 16 nodes, all located near the off-corner subsurface region. This is caused

by the hinging mechanism around the corner. Only 1 node exceeds the threshold of 0.9%

at 2.2m/min casting speed. Note that the strain has oscillation peaks due to convergence

difficulty. So, no failure is considered if there are less than 5 nodes exceeding the threshold.

Therefore, the critical casting speed below which no hot tear crack initiates is 5m/min.

Figure 6.15 shows damage strain contours in z direction at both speeds (2.2m/min and

5.0m/min). The damage strain is very small (∼ 0.075%) for all nodes. No nodes fail in

the axial direction even at high casting speed. Therefore, it is the longitudinal off-corner

subsurface hot tear cracks, and not transverse surface corner cracks that limit the casting

speed.
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6.4.4 Critical Casting Speed

Using the damage criterion described by Equation 2.1, a casting speed limit to avoid crack

initiation can be obtained by running many cases with various casting speeds. The minimum

speed having failed nodes is the critical speed limit for that section size, mold length and

steel grade. For the base case, with 120mm section size and 800mm mold length, the critical

casting speed is close to 5.0m/min. This roughly agrees with the experimental findings [187].

The practical casting speed limit varies from 2m/min of a 200mm square section to 3m/min

of a 130mm section with 800mm mold length. From the previous discussion, higher casting

speed leads to higher inelastic strain at off-corner sub-surface region as well as larger bulging,

as indicated by Figure 6.16. It indicates that sub-mold bulging will eventually stop increasing

due to the shell growth.

The maximum bulging is plotted versus casting speed in Figure 6.17. This reveals how

the maximum bulging increases with casting speed. The maximum bulging increases sharply

as casting speed increases near the critical casting speed indicated by hot tear criterion. This

sharp threshold suggests that the critical casting speed might not be particularly sensitive

to steel grade.

Figure 6.17 could be used to determine casting speed limit under any specific maximum

bulging criterion. A maximum bulging of 4mm to 10mm corresponds to avoid hot tear

off-corner sub-surface cracks. The critical speeds to avoid cracks, thus, are higher than the

critical speeds to satisfy the 1mm maximum bulging criterion, given the same section size

and mold length.

6.4.5 Effect of Section Size and Mold Length

Figures 6.19 and 6.20 show the critical speed for different section sizes and working

mold lengths, based on the hot tear criterion and the 1mm maximum bulging criterion,

respectively. The working mold length is shortened by a half of the section size, from small

hollowed symbols to small solid symbols as shown in Figure 6.18, to take into account the
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axial support of the billet from mold bottom due to cantilever effect. This is missing in

this model because the moving slice deforms without much interaction among its neighbors.

Then, corrected data is scaled back, larger solid symbols as shown in Figure 6.18, to the

working mold lengths being modelled, which are 500mm, 700mm and 1000mm.

The critical casting speed increases as the working mold length increases for a given

section size. For example, the critical casting speed based on the cracking criterion increases

from 4.2m/min to 6.4m/min as the working mold length increases from 500mm to 1000mm

for a 120mm× 120mm square billet. This is due to colder and thicker shell at mold exit for

the longer dwell time in the mold. The critical speed decreases as the section size increases in

a given mold length. For example, the critical casting speed based on the cracking criterion

decreases from 5m/min to 2m/min as the section size increases from 120mm to 250mm

for a 800mm mold. It is very sensitive to the mold section size because the larger surface

subjected to ferrostatic pressure provides a lever arm for much bending around the corner.

The CON2D predicted casting speed limits based on hot-tear criterion and 1mm max-

imum bulging criterion are compared to measured casting speeds from typical industrial

practices [10]. CON2D predictions are generally more conservative due to the perfect mold

operating condition assumption. Ideal mold taper which prevent any gap between the mold

wall and the shell surface can hardly be implemented in practice. Therefore, corners of billets

are often hotter and weaker then those predicted by CON2D. The friction between the mold

wall and shell surface will also lower the real casting speed limits.

6.5 Implications

Productivity is always a consideration interest for caster designers and operators. The

critical casting speed plots developed in this work are useful guidelines for casting engineers in

choosing safe casting speeds. Table 6.4 predicts the corresponding productivity limits, based

on both the off-corner longitudinal crack criterion and 1mm maximum bulging criterion.
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The intuitive productivity benefit from large section size is almost offset by the lower

casting speed limits to avoid excessive bulging or off-corner cracks. Casting at the desired

cross section size to minimize rolling cost will not lose much productivity. Longer mold length

increases the productivity limits. This is because the thicker, colder shell allows higher

casting speed before bulging below the mold becomes excessive. Based on this finding,

extra sub-mold support, such as properly aligned foot rolls, should also allow increasing

productivity. The latter approach avoids the problems associated with longer molds, as

surface temperature can be easily controlled by sprays and the shorter mold is less sensitive

to mold taper problems.
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6.6 Figures and Tables
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Fig. 6.1: Measured average heat flux and fitted average heat flux curve
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Fig. 6.9: Continuous-cast billet section after breakout showing off-corner subsurface crack
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163



0.05

0.05

0.05

0.05

0.05

0.05

0.54

0.54

X(mm)

Y
(m

m
)

0 10 20 30 40 50 60

0

10

20

30

40

50

60

1500.72

1477.09

1411.79

X(mm)

Y
(m

m
)

0 10 20 30 40 50 60

0

10

20

30

40

50

60

1

1 0.5

0.5

0.02
0.02

0.02

0.04

0.04

X(mm)

Y
(m

m
)

0 20 40 60

0

10

20

30

40

50

60

1500.72

1477.09

1411.79

X(mm)

Y
(m

m
)

0 20 40 60

0

10

20

30

40

50

60

(a) 2.2m/min at 850mm mold exit (b) 5.0m/min at 1920mm below mold exit

Fig. 6.14: Hoop damage strain (Section size: 120mm, working mold length: 700mm)
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Table 6.1: Parametric study conditions

Billet section size (mm×mm) 120× 120, 175× 175, 250× 250
Working mold length (mm) 500, 700, 1000
Total mold length (mm) 600, 800, 1100
Taper (%m) Ideal taper (on both face)
Time to turn on ferrostatic pressure (sec.) 0.3
Mesh size (mm×mm) 0.1× 0.1 ∼ 1.4× 1.0
Number of nodes (varies with section size) 7381, 10797, 15433
Number of elements (varies with section size) 7200, 10560, 15120
Time step size (sec.) 0.001 ∼ 0.5
Pouring temperature (oC) 1540.0

Table 6.2: Steel compositions and important transforming temperatures

Steel composition (wt%) 0.27C, 1.52Mn, 0.34Si, 0.015S, 0.012P
Liquidus temperature (oC) 1500.72
70% Solid temperature (oC) 1477.02
90% Solid temperature (oC) 1459.90
Solidus temperature (oC) 1411.79
Austenite → α-ferrite starting temperature (oC) 781.36
Eutectoid temperature (oC) 711.22

Table 6.3: Critical strains (%)

Casting speed (m/min) 2.2 3.0 4.0 4.6 4.8 5.0 6.0
Critical strain (%) 0.91 0.9 0.9 0.66 0.59 0.49 0.52

maximum damage strain (%) 0.94 0.8 0.92 0.97 1.05 1.50 1.76
Number of failed notes 1 0 1 2 4 16 26

Table 6.4: Productivity limits (tonnemin−1)

Mold length (mm) Longitudinal off-corner 1mm maximum
Crack criterion Bulging criterion

Section size (mm) 120× 120 175× 175 250× 250 120× 120 175× 175 250× 250
600 0.4 0.7 0.7 0.4 0.5 0.4
800 0.6 0.9 0.9 0.5 0.6 0.5
1100 0.7 1.0 1.2 0.6 0.8 0.7
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Chapter 7. Ideal Taper Prediction

Mold taper is an important control parameter in the continuous casting of steel billets.

Properly tapered mold walls compensate for shrinkage of the solidifying strand to maintain

good contact and heat transfer between the mold wall and shell surface without exerting

extra force on the hot and weak shell. The amount of taper needed varies with steel com-

position and casting conditions, such as mold length, casting speed, and type of lubrication.

Inadequate mold taper leaves an air gap between the mold wall and shell surface which leads

to a hotter and thinner shell within the mold which partly relates to criterion 4. Ferrostatic

pressure from the liquid core will bulge the weak shell within and out of the mold and even

break out the shell in extreme situations. Excessive taper exerts extra load on the solidify-

ing shell and increases dragging friction which relates to criterion 2. Transverse cracks, shell

buckling or even shell jamming and breakouts may occur. Past efforts conducted to assist

mold taper prediction includes mathematical models to calculate thermal shrinkage of the

steel billet [51, 70, 71] and thermal distortion of the mold [67, 70, 175, 188]. These previous

investigations assume optimal taper should match the shell shrinkage, presuming this should

produce good heat transfer across the interfacial layer between mold wall and billet surface

at the face center along the mold axial direction. Corner effects have received little attention.

Traditionally, it is assumed that optimal taper should exactly match shell shrinkage

everywhere around the mold perimeter. However, corner effects are complex and providing

proper taper to match corner shrinkage is very important. To understand the thermal-

mechanical behavior of the billet especially at corner, three different mold configurations

have been simulated under two casting speeds, 2.2m/min and 4.4m/min, which are within

the normal industrial operation range. The first configuration is taken from a plant trial

conducted at POSCO, Pohang works, South Korea [41]. A single linear taper of 0.75%m−1

is used during this trial. The second configuration assumes perfect contact between mold wall

and shell surface around the billet perimeter. This implies uniform heat flux around the mold

perimeter. This is an idealized condition that requires a complex mold wall surface following
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the shell shrinkage everywhere from the meniscus to the mold exit. The third configuration

is a different idealized mold wall shape, which produces uniform surface temperature around

the billet perimeter. The actual shape is unknown before the simulation is conducted. It can

be extracted by backward calculation according to the heat flux function around the billet

surface and air gap properties.

Although these mold configurations would be very difficult to implement in practice,

the conditions are easy to achieve in the model. They are simply three different thermal

boundary conditions applied at the billet surface:

1. Heat transfer resistor model between shell surface and mold wall which requires fully

coupled thermal-stress simulation.

2. Uniform heat flux around the billet perimeter as a function of casting time.

3. Uniform surface temperature around the billet parameter as a function of casting time.

Each is discussed in turn.

7.1 Heat Transfer Resistor Model (0.75%m−1 Taper)

The first configuration simulates a realistic operating practice of flat mold walls with a

fixed taper of 0.75%m−1. Figure 4.3 shows the heat transfer resistor model assumed between

the mold wall and the shell surface. The values of the parameters are given in Table 4.1.

The values of cooling water temperature and its heat transfer coefficient vary from meniscus

to mold exit. The actual profiles are taken from a more advanced heat transfer model,

CON1D [2]. The contact resistance differs from its physical value between steel and copper

because it also includes the effect of oscillation marks is included. The heat extraction

rate is mainly determined by the gap in the interfacial layer, which further depends on the

instantaneous mold wall distortion and the shrinkage of the shell. Mold distortion from

Equation 4.39 is given in Figure 7.1.
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The shrinkage of the shell is taken from the mechanical analysis. Since the temperature

and stress/strain distributions depended on each other and are unknown in prior, a fully

coupled simulation procedure as previously given in Figure 4.4 is needed. At each time step,

the gap size from the previous time step is used to estimate the heat transfer rate and the

heat transfer Equations are solved. Then, the mechanical model is solved based on the new

temperature distribution to give out a new gap. The two-step procedure is repeated until

the gap sizes from two successive iterations are close enough.

7.2 Uniform Heat Flux Around Mold Perimeter Model

The instantaneous interfacial heat flux profile down the mold in this case is obtained

by differentiating the average heat flux profile, fitted from average heat flux data points

measured by many investigators [6, 10, 15, 181–183]. In addition, the instantaneous heat

flux function is compared with instantaneous heat flux measurements by Samarasekera and

coworkers [189]. Equations 7.1 and 7.2 show the fitted average and instantaneous heat flux

functions. Figures 7.2 and 7.3 compare the average and instantaneous heat flux curve against

the measurements.

q̄(MWm−2) = 13t(s)−1[(t(sec.) + 1)0.5 − 1] (7.1)

q(MWm−2) = 6.5(t(s) + 1)−0.5 (7.2)

7.3 Uniform Surface Temperature Around Mold Perimeter

Model

The third mold configuration fixes the surface temperature to be uniform around the mold

perimeter, and is shown in Figure 7.4. This profile is identical to the surface temperature

profile generated down the face center while the heat flux function (Equation 7.2) is applied.
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7.4 Secondary Cooling Pattern

After the billet exits the mold, it enters the secondary cooling region. A heat convection

coefficient function suggested by Nozaki [16] is adopted in this work. The secondary cooling

rate in this work is designed to minimize the sudden surface temperature change at the face

center when the billet leaves the mold. Figure 7.5 shows the heat transfer coefficient profile

for both casting speeds.

7.5 Billet Behavior For Different Mold Configurations

CON2D is applied to predict thermal-mechanical behavior of billets cast under the 3

different mold configurations described previously. The optimal taper strategy will be cho-

sen based on avoiding both in-mold and below-mold cracks as well as excessive bulging.

The simulation results are evaluated according to the effects on the shell growth, sub-mold

bulging, and transverse corner cracks as well as longitudinal off-corner sub-surface cracks.

7.5.1 Surface Temperature and Shell Growth

Figure 7.6 shows the temperature contours at the mold exit for the three types of mold

configurations. The liquidus at 1500.72oC and solidus at 1411.79oC isothermals mark the

shell growth at mold exit.

Both the mold configurations with uniform heat flux and uniform surface temperature

around the mold perimeter produce a thicker shell near the corner relative to the shell near

the face center. This is due to 2D cooling. The shell thicknesses at billet face center for

the mold with 0.75%m−1 linear taper in Figures 7.6a and 7.6b are much thinner than those

with the mold providing the prescribed surface heat flux in Figures 7.6c and 7.612d as well

as the uniform surface temperature in Figures 7.6e and 7.6f. This indicates that 0.75%m−1

is much less than ideal taper at face center. This practical mold configuration also leads to

a hot spot at the off-corner region at 2.2m/min speed in Figure 7.6a. This indicates that
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more taper is needed both in the top region of the mold and near the corners to avoid the

hot spots.

Figure 7.7 compares the surface temperature histories starting from the meniscus at the

billet corner for the three different mold configurations described above. The traditionally

believed optimal taper, which perfectly follows the shell shrinkage everywhere, and which

corresponds to the uniform heat flux configuration, produces an extremely cold corner in

the mold. When the billet leaves the mold, there is nearly 200oC reheating near the corner

despite the spray zone design to minimize surface temperature change at the billet face

center. The corner cools faster than for the other two mold configurations due to 2D heat

convection in the secondary cooling zone. Previous investigations of internal cracks [23, 25]

suggest that reheating should be avoided to prevent internal cracks. Thus, an extremely cold

corner is not favorable, which means that the traditional strategy for optimal taper design

is not optimal near the corner.

7.5.2 Sub-Mold Bulging and Longitudinal Off-corner Sub-Surface Cracks

As the billet leaves the mold, ferrostatic pressure from the liquid core due to gravity is

totally supported by the solidifying shell and produces sub-mold bulging. The amount of

bulging is determined by the strength of the shell. A hot and thin shell having low strength

will bulge more. The more severe creep at higher temperature makes the shell bulge even

further. Figure 7.8 shows the stress component along the shell surface with distorted shell

for the billet casting in the mold with 0.75%m−1 linear taper at 100mm below the mold

exit. The amount of bulging is small while casting at 2.2m/min (< 0.5mm), but increases

nearly 8 times when the casting speed is doubled. The ferrostatic load bends the billet shell

around the corner generating tensile stress along the solidifying front. This tensile stress

is perpendicular to the growth direction of the dendrite arms and may lead to sub-surface

cracks beneath the surface region about 10 ∼ 15mm from the corner. Recent experiments

of steel strength near its melting temperature [110] indicates that the strength of plain
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carbon steel is around 10MPa at 1300oC which is the same as the maximum tensile stress

value in Figure 7.8b. This implies that fracture is highly possible around the sub-surface

off-corner region in Figure 7.8b. Figure 7.9 shows the damage strain component along the

solidification front which leads to hot tear cracks according to Equation 2.1. The critical

strain is calculated as 0.6% ∼ 1% from Equation 2.1. The damage strain at two off-corner

regions near the solidification front exceeds the critical strain by over 60% when the casting

speed is doubled to 4.4m/min. This provides further evidence that hot tear cracks initiate

for this condition. Therefore, a mold design with more taper to cool the corner is needed to

avoid excessive bulging and longitudinal sub-surface off-corner cracks below the mold.

7.5.3 Transverse Corner Cracks

Although a very cold corner may prevent bulging and off-corner cracks, it has its own

shortcomings. A very cold corner in the mold will suffer reheating in the secondary cooling

zone. Previous research by Grill [23] and Sorimachi [25] already indicated that reheating

should be avoided to prevent sub-surface cracks. Figure 7.10 shows the contours of the stress

component along axial direction for the billet with the uniform heat flux around the perimeter

at 100mm below the mold exit. The corner is reheated from around 400oC to 600oC at this

distance. The totally solidified steel near the surface tries to expand under reheating. This

exerts tensile stress at the sub-surface region. Figure 7.10 shows high tensile stresses at

the corner sub-surface region. This high tensile stress region is closer to the solidification

front at higher casting speed. Although the damage strain is not over the critical value for

these speeds, it is believed that transverse sub-surface corner cracks would initiate when the

casting speed is increased further.

Figure 7.11 shows contours of the stress component along the billet axial direction for

the billet with the uniform heat flux around the perimeter at two different locations (100mm

for 2.2m/min and 200mm for 4.4m/min) below meniscus. Tensile stress up to 30MPa near

the corner surface is indicated. This is because the corner surface cools faster than its sub-

174



surface layer. Transverse corner surface cracks are easily initiated under this stress state if

the friction between the mold and the billet is considered, or if any other problems existed

such as mold misalignment or stress concentration at deep oscillation marks. Thus, very

cold corners should be avoided to prevent transverse corner surface cracks and sub-surface

cracks.

7.6 Optimal Taper Profiles Near Billet Corner

It has been found that an optimal mold taper should avoid both very cold or very hot

billet corners in order to avoid cracks or excessive bulging. Therefore, the optimal taper

should have the following features:

1. It should be large enough to follow the shrinkage of the billet around the face center

to avoid gap formation.

2. It should allow some amount of gap between the billet surface and the mold wall to

offset the over cooling caused by 2D heat transfer near the billet corner so that the

surface temperature of the billet is uniform around the perimeter.

This is consistent with industrial practice that uses less taper near the corner [69]. Since

some gap is needed near the billet corner, the optimal taper could not be determined by

only analyzing billet shrinkage. Conditions of the heat flux profile near the corner as well as

the heat resistance across the gap are also needed. This makes the optimal taper prediction

much more complex. Figure 7.12 shows the heat flux at the shell surface and the gap size

near the corner at mold exit that are needed to achieve the uniform surface temperature

around the mold perimeter. The heat flux is quite uniform away from the billet corner with

its value described by Equation 7.2. The heat flux drops near the corner to compensate

the 2D heat transfer. The mold should be designed to leave a gap on the order of 0.1mm

between the billet and the mold from 13mm from the corner in order to reduce the heat

transfer. The optimal gap is only predicted up to 4mm from the corner since the round
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corners of real molds are not modelled in this work. The dashed line indicates the ideal mold

wall position predicted by the CON2D model with a numerically simple 1D slice domain.

This 1D prediction is surprisingly accurate at the corner as it leaves a gap up to 0.15mm

even though it does not consider the corner effect totally.

Figure 7.13 shows the shrinkage of the billet under different assumptions of mold oper-

ation compared with the 0.75%m−1 linear taper case. The billet shrinkage profile with the

uniform surface temperature compares closely to the ideal taper prediction of the 1D thermal

stress model. Considering that the optimal taper should be less than the billet shrinkage to

allow some gap near the billet corner, the ideal taper prediction of the 1D slice model is a

reasonable estimation method.

7.7 Optimal Taper Profiles

The 1-D slice model of CON2D has been adopted to investigate the effects of casting

speed and heat flux on optimal taper profile including the effects of the mold distortion.

Details of the slice model are discussed in section 5. The shrinkage profiles of the billet

are given in Figure 7.14 up to 1000mm assuming the average heat flux between the mold

and the billet is only a function of dwell time as given in Equation 7.1. It can be observed

that the instantaneous taper is not linear. Larger taper is needed near the meniscus and for

shorter molds. This is mainly due to the instantaneous heat flux profile. Heat flux is high

near the meniscus and drops monotonically thereafter. Multifold linear taper or parabolic

taper is recommended to prevent a general gap between the mold and billet surfaces near

the meniscus. As the casting speed increases, the amount of mold taper should be reduced

accordingly, due to less dwell time, the billet stays in the mold shorter which decreases the

total heat extracted.

Figure 7.15 shows the shrinkage of the billet at 1000mm below meniscus as a function

of casting speed. The high heat flux curve corresponds to the heat flux profile fitted by

Wolf [182] for billet casters, while the lower one corresponds to the heat flux profile fitted
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by author in section 6. These two profiles enclose most of the published average heat flux

measurements for billet casters [182, 183]. Smaller taper is needed when the average heat

flux in the mold is lower. It is also consistent to Figure 7.14 that mold taper should be

reduced as the casting speed increases.

Figure 7.16 shows the shrinkage of the billet at mold exit as a function of the total heat

extracted from the mold for different casting speeds and mold lengths. At each casting

speed, the shrinkages are measured for different working mold lengths, 50mm, 200mm,

500mm, 700mm and 1000mm. It is observed that the shrinkage depends on the total heat

extracted by the mold only. The profiles for different casting speeds collapse into one profile,

which indicates that the total heat removed in the mold is a more fundamental parameter

controlling the amount of taper needed at the mold exit than either casting speed, or mold

length. This important finding is true in general if the shape of the instantaneous heat flux

profile stays the same for all different casting speeds.

Figure 7.17 shows the maximum mold distortion at mold exit as a function of the average

heat flux for different casting speeds and working mold lengths, based on Equation 7.1. The

profiles for different casting speeds again collapse to a single curve. This indicates the

average heat flux in the mold is the fundamental parameter controlling the mold distortion.

Mold distortion naturally increases with the average heat flux, owing to the higher mold

temperature. This mold distortion should be taken into account when designing mold taper.
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7.8 Figures and Tables
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Fig. 7.1: Mold distortion for 2-D simulation
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Chapter 8. Summary

A finite element thermal mechanical model, CON2D, is improved and then applied to

investigate the minimum heat flux and shell thickness for continuous casting of steel due to

strength of the thin shell, the maximum casting speed to avoid sub-mold bulging cracks in

billet casting, and the ideal taper of continuous billet casting molds.

8.1 Summary of CON2D Improvement

The current thermal mechanical is improved based on the previous model [19, 20] to

simulate the continuous casting of steel more realistically.

Heat flux at the steel surface is investigated corresponding to different problems as shown

in Figure 6.1. The average heat flux profiles are fitted from the measured average heat flux in

the mold available in the literature [5–8,10,15,182,183]. The instantaneous heat flux profiles

actually used in the CON2D simulations are obtained by differentiating the corresponding

average heat flux function and then applied on the shell surface uniformly around the section

perimeter. This approach makes CON2D able to simulate continuous casting processes under

realistic heat transfer conditions.

A heat resistor model across the heat flow path from the cooling water to the shell surface

is developed for the 2-D simulations to address the interdependence between the heat flux

at the shell surface and the gap formed between the shell surface and the mold wall. Note

that the gap size also depends on the deformation of the steel. Applying this heat resistor

model enables the fully coupled heat transfer and stress analysis of CON2D.

Liquid and solid phase fractions are calculated based on pseudo-binary non-equilibrium

Fe-C phase diagram. The phase diagram is abstracted from the fraction temperature curves

of a steel predicted by a comprehensive micro-segregation model [2, 167] under given solidi-

fication conditions.
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In order to quantitatively predict hot tear cracks during the continuous casting of steels,

previous hot tear criteria are reviewed and evaluated based on their capability and feasibility.

An empirical strain criterion [21] is chosen to implement in CON2D to predict hot tear

cracks. This empirical criterion bears both essential factors influencing the initiation of

hot tear cracks, mushy zone width and the mechanical strain rate, included in the more

comprehensive RDG hot tear criterion.

A model representing the mechanical behavior of mushy steel is developed based on a

two-phase (liquid and solid) formulation of mass balance and momentum balance equations

[138]. Interdendritic flow is modelled by Darcy’s law. Three different forms of mushy zone

constitutive model are derived for the cases of large permeability (K →∞), zero permeability

and intermediate permeability (K → 0), respectively. The mushy zone constitutive equation

used follows the large permeability model. This maximizes the inelastic strain in the mushy

zone and provides conservative hot tear crack prediction with the empirical hot tear strain

criterion.

8.2 Summary of CON2D Applications

8.2.1 Critical Shell Thickness Due to Tensile Rupture

The theoretical limits of the shell thickness, average heat flux and casting speed of the

steel continuous casting process as a function of steel grade, section size, and mold length,

assuming ideal mold lubrication is investigated. The predictions are based on the minimum

heat flow that is just able to produce a thin shell with the critical thickness needed to

withstand the ferrostatic pressure below the mold and avoid a longitudinal rupture from

excessive inelastic stain.

The critical shell thickness is predicted to be on the order of 3mm. It is surprisingly

insensitive to steel grade and superheat, but decreases with decreasing section size and

increasing working mold length. The critical average heat fluxes in the mold, which is
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naturally related to the shell thickness at the mold exit, are predicted to be extremely low,

less than 0.4MWm−2 for a conventional 700mm working mold length, 200mm square bloom

mold. This corresponds to a high casting speed of 21m/min with perfect contact between

the mold and steel surface or a large 2.2mm oscillation mark depth with a 2.2m/min casting

speed for a 700mm length mold.

The infeasibility of these limits in practice is likely due to other problems limiting the

casting speed such as sub-mold bulging and local thin shell due to insufficient taper. Atten-

tion should return to focussing on these other problems.

8.2.2 Casting Speed Limit Due to Sub-mold Bulging

Higher casting speed leads to a thinner and hotter shell at mold exit and more bulging

below the mold. Excessive bulging below mold exit may generate subsurface off-corner

longitudinal hot tear cracks due to subsurface tension on the weak solidification front due

to hinging around the corner, especially just below mold exit.

Figure 6.19 is a tool for mold designers or operators to determine critical casting speeds for

any chosen maximum bulging criterion. For the 0.27%C steel, an empirical fracture criterion

for hot tearing based on strain, strain rate and mushy zone temperature range corresponds to

4− 10mm maximum bulging. This indicates critical casting speeds of 5m/min for a 120mm

square section and 800mm mold and 1.5m/min for a 250mm square section and 500mm

mold.

As section size increases from 120mm to 250mm, the critical casting speed decreases

from 5.0m/min to 1.8m/min for a 800mm mold, due to the higher off-corner subsurface

tensile strain caused by larger ferrostatic bending force.

As mold length increases from 600mm to 1100mm, the critical casting speed increases

from 3.75m/min to 6m/min for 120mm section size, due to the colder and thicker shell at

the mold exit.
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High tensile stresses build up at the billet corner may contribute to transverse corner

cracks due to high corner cooling. With the ideal taper and alignment assumed here, these

cracks appear not to limit casting speed.

Billet casting productivity is limited by off-corner subsurface hot tear cracks to around 1

tonne per minute. Increasing section size billet does not produce a significant advantage in

productivity. Longer mold length and sub-mold support, such as properly aligned foot rolls,

are recommended to achieve higher productivity.

8.2.3 Ideal Taper of Billet Casting

CON2D has been applied to investigate different mold configuration assumptions includ-

ing corner behavior in order to predict optimal taper profiles. Several conclusions can be

drawn:

• The shape of the mold wall around the billet perimeter should be carefully designed

to ensure optimal thermal-mechanical behavior of the billet, especially near its cor-

ner. Too little taper leads to hot spot at off-corner location, and increases sub-mold

bulging. Longitudinal off-corner sub-surface cracks or even breakouts may happen at

extreme conditions. Too much taper overcools the corner region. This makes the

billet prone to transverse surface cracks or longitudinal sub-surface cracks. The ideal

taper design minimizes surface temperature differences around the billet perimeter.

Although accurate taper prediction should consider a full 2-D transverse section, a

1D taper prediction by CON2D with a slice domain is surprisingly accurate even for

billet casting molds. Considering its great computational savings, this 1-D method is

acceptable for online taper prediction in industry or parametric studies in academia.

• The ideal taper is a function of casting speed and mold length. More fundamentally, it

depends on the total heat removed in the mold regardless of the casting speed or mold

length. The higher is the total heat extracted by the mold, the larger taper is needed.

A 1.4%m−1 taper is needed when the total heat removed by the mold is 90MJm−2.
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When the total heat removed by mold is decreased to 10MJm−2, almost no taper is

needed.

• More taper is needed near the meniscus in order to compensate for the faster initial

shrinkage. Therefore, parabolic mold taper or multifold linear taper with larger taper

near the meniscus is recommended.

• Mold distortion away from shell increases the need for parabolic or multifold linear

taper in billet molds. Mold distortion increases with heat flux in the mold from 0.04%

at 1.4MWm−2 to over 0.4% at 5.6MWm−2.

8.3 Future Work

The majority of this work is to apply CON2D to investigate three important billet issues

related to hot tear cracks, the critical shell thickness to avoid breakouts, the maximum cast-

ing speed to avoid off-corner sub-surface cracks, and ideal taper prediction. Improvements

of CON2D has been made to assist these objectives. Mushy zone constitutive model devel-

opment has been initiated to make better predictions of mushy zone mechanical behavior

and hot tear cracks.

Future work is suggested as follows:

• Continue the development of constitutive model of the mushy zone. Development will

focus on three aspects: permeability model and the CON2D implementation. The per-

meability model is essential to predict the interdendritic flow in the mushy zone. Steel

permeability experiments and models are very limited. So is the mechanical behav-

ior. Therefore, experimental investigation of mushy steel permeability and mechanical

behavior are needed. The permeability study should investigate the effect of several

important factors, such as the primary and secondary dendrite arm spacings, liquid

fraction and grain size. Implementing the mushy zone model with small permeability

(K → 0) enables CON2D to predict realistic stress, strain as well as the interdendritic
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liquid pressure in the mushy zone. However, the difference of the behaviors between the

solid and the mushy zone makes the stress model more difficult to converge. Therefore,

small element size is needed near the solidification front in the mushy zone. As the

solidification front moves through the whole modeling domain, local refinement around

the mushy zone by adaptive meshing technique is preferred to get both enough mesh

refinement in the mushy zone and low computation cost.

• A better hot tear criterion should be developed to predict hot tear cracks more accu-

rately. Upon the completion of the mechanical model of the mushy zone, new hot tear

criterion that is more comprehensive than the RDG criterion can be implemented in

CON2D based on the mushy zone stress, strain and interdendritic liquid pressure. This

new criterion should take more physical phenomena into account, such as grain sizes,

dendrite structure (columnar or equixed). Microsegregation model should also extend

below solidus to include precipitation effects. Fundamental-based dimensional analysis

should be conducted during the criterion development to determine the importance of

each physical quantity before incorporating it into the criterion. This will also lead to

a unit independent criterion with clearer physical representations.

• Fully coupled heat transfer and stress model should be further developed to include the

mold into CON2D. This makes CON2D able to predict the gap between the mold wall

and shell surface with better accuracy. Moreover, multi-dimensional mold distortion,

mold stiffness, and multi-dimensional mold taper can be considered in CON2D, in

order to simulate the continuous casting process more realistically.

• Ideal taper prediction should be extended based on the results of the current work to

investigate the 2-D ideal taper. In the current work, a controlled small gap is preferred

to generate uniform surface temperature around the strand section perimeter to avoid

both in-mold corner surface cracks and sub-mold off-corner sub-surface cracks. How-

ever, the current work still assumes a straight mold wall around the section perimeter.
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Although this straight mold is also able to be tapered to control the gap around strand

corner, the center of the mold will squeeze the steel surface and increase the friction

between the mold and steel. This could be avoided by using a curved shape around

the section perimeter followed right shrinkage of the strand.

• In addition to the critical shell thickness to avoid breakouts and the maximum casting

speed to avoid off-corner inner cracks due to bulging, there are other issues to be

investigated such as the axial strain and withdraw force, the effect of the secondary

cooling pattern, and sub-mold roll support pattern and alignment.
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Appendix A. Finite Element Implementation of the

Heat Transfer Model

A.1 Linear Temperature Triangles

The small triangle in Figure A.1 show the constant temperature-gradient triangle element

used for the heat flow model. Temperature within an element is interpolated by the same

shape functions used to interpolate the coordinates.

T =
3∑

i=1

Ni(x, y)Ti (A.1)

The [B] matrix in global coordinate system can be obtained as:

[B] =
1

2A




y2 − y3 y3 − y1 y1 − y2

x3 − x2 x1 − x3 x2 − x1


 (A.2)

where A is the area of the triangle element.

A.2 Conductance Matrix and Capacitance Matrix

The elements in conductance matrix and the capacitance matrix in Equation 4.15 are

given in Equations A.3 and A.4. Refer to Cook [190] for the details of the area integration

of the natural coordinate function.

[K]el =

∫
[B]T




ke 0

0 ke


 [B]dA (A.3)

[C]el =
ρcpA

12




2 1 1

1 2 1

1 1 2




(A.4)
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(0,1)

(0.5,0) (1,0)

(0.5,0.5)

(2/3,1/6)(1/6,1/6)

(1/6,2/3)

Fig. A.1: Six-node quadratic displacement triangle element with Gauss points for stress
model with corresponding four three-node linear temperature triangle elements for heat

flow model

where ke is the average conductivity of the three nodal values within each element, and cp

is the effective specific heat within an element given in Equation 4.16.
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Appendix B. Finite Element Implementation of the

Stress Model

B.1 Linear Strain Elements

Figure A.1 shows the six-node linear strain isoparametric triangle finite element used in

this work. Global coordinates and displacements within each element are interpolated from

its nodal values by: 



x

y





=
6∑

i=1




Ni 0

0 Ni








xi

yi





(B.1)





u

v





=
6∑

i=1




Ni 0

0 Ni








ui

vi





(B.2)

where the shape function in natural local coordinates are:

[
N1 N2 . . .N6

]
=

[
s(2s− 1) t(2t− 1) r(2r − 1) 4st 4tr 4sr

]

r = 1− s− t

(B.3)

B.2 Generalized Plane Strain Formulation

The three unknowns, a, b, and c, which describe the out-of-plane strain in Equation

4.5, are assembled into the finite element Equations to solve concurrently with the in-plane

displacements. The displacement vector used for this condition is therefor:

{δ15×1} =

{
{u12×1}T a b c

}T

where

{u12×1} =

{
u1 v1 . . . u6 v6

}T

(B.4)
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where u12×1 is the classic displacement vector. The strain-displacement relationship is:

{
∆εx ∆εy ∆εxy ∆εz

}T

=
[
B
′
4×15

]
{δ} (B.5)

where [B
′
4×15] matrix for the 2D generalized plane strain configuration is given as:

[
B
′
4×15

]
=




[B3×12] [03×3]

[01×12] 1 x y




where

[B3×12] =




∂N1

∂x
. . . ∂N6

∂x
0 . . . 0

0 . . . 0 ∂N1

∂y
. . . ∂N6

∂y

∂N1

∂y
. . . ∂N6

∂y
∂N1

∂x
. . . ∂N6

∂x




(B.6)

The elastic-strain relation is:





∆σx

∆σy

∆σxy

∆σz





= [D]








∆εx

∆εy

∆εxy

∆εz





−





∆εT

∆εT

∆0

∆εT





−





∆εplx

∆εply

∆εplxy

∆εplz








(B.7)

The deviatoric stress vector is:

{σ}′ =

{
σx − 1

3
σm σy − 1

3
σm σz − 1

3
σm τxy

}

where

σm = σx + σy + σz

(B.8)

The von-Mises or “equivalent” stress is:

σ̄ =

√
3

2

(
(σx − σy)

2 + (σx − σz)
2 + (σz − σy)

2 + 2τ 2
xy

)
(B.9)

198



B.3 Global Stiffness Matrix and Force Vectors

The global stiff matrix [K], and force vectors, {∆Fεth
}, {∆Fεin

}, {Ffp}, and {Fel} in

Equation 4.21 are assembled from the local stiffness matrix and force vectors of each element

at the current time step, t.

[K] =
n∑

e=1

∫

Ae

([B]e)
T [D][B]edA (B.10)

{Ffp} =
n−I∑
e=1

∫

Lfp

([N ]e)
T (Fp) dLfp (B.11)

{∆Fth} =
n∑

e=1

∫

Ae

([B]e)
T [D]{∆εth}dA (B.12)

{∆Fin} =
n∑

e=1

∫

Ae

([B]e)
T [D]{∆εin}dA (B.13)

{∆Fel} =
n∑

e=1

∫

Ae

([B]e)
T [D]{∆εel}dA (B.14)

Integrals are evaluated numerically using standard second order Gauss quadrature [190]

according to the integration sampling points given in Figure A.1 with constant weighting

fractions of 1/3.
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Appendix C. Sweeping Algorithm

The algorithm is described as follows and schemed in Figure C.1:

Find out the intersection point, S, between an axis (either x, y, or z) and the plane

perpendicular to the given vector, d3 described in Equation 4.51, that passes an arbitrarily

chosen point, P. Take vector from P to S, d4, as the base sweeping vector and find out a new

vector, d5, that is cross orthogonal with respect to d3 and d4.

d5 = d3 × d4 (C.1)

Use d4 and d5 to find out all equally distributed sweeping vectors.

dsij = d4j cos θ + d5j sin θ

j = x, y, z
(C.2)

θ is the angle between d4 and dsi.
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Fig. C.1: Sweeping algorithm
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